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Executive Summary 
 
The Los Angeles Case Study is a milestone in the development of EpiSimS (Epidemic Simulation 
System). Several new capabilities were implemented into EpiSimS, to advance the simulation 
capability, to enable high-fidelity simulation of an influenza pandemic, and to model realistic 
epidemic response policies. 
 
A synthetic population has been built to match the 2000 US Census data, representing over 16 
million persons in the five counties of Los Angeles, Orange, Riverside, Ventura, and San Bernardino 
as individual agents. This synthetic population captures demographic and geographic data down to 
the census-block or finer resolution. The geographic representation of the region is captured in 
562,452 locations, representing households, small neighborhoods, workplaces, schools, etc. Each 
individual has a set of activities, based on demographics. A schedule is generated for each 
individual, specifying where and when they travel during the day. Persons that occupy the same 
room at the same time have opportunity to transmit disease. The social contact structure, including 
number of contacts per person, and the strength, duration, and type of such contacts, thus emerges 
from the simulation. Because there is no way to observe or quantify the actual social contact 
structure in Los Angeles, the social contact structure that emerges from EpiSimS must be regarded 
as the best such information that exists. 
 
The first step in the process of creating the synthetic population is conducted with a set of software 
utilities called UPMoST. The UPMoST team gathered population, household and activity data using 
US Census Bureau Data, the Dun and Bradstreet Business Database, the National Household Travel 
Survey, the National Center of Educational Statistics, and NGA (National Geospatial-Intelligence 
Agency) Emergency Response Services. UPMoST person and household information is used to 
generate demographic data for each person in the simulation, including each person’s id, age, 
gender, economic status, family situation, whether they are a worker or not, and home location. 
 
The next step is to generate activity schedules for each individual. The National Household Travel 
Survey is used to assign a set of activities to each individual, to specify the order in which they are 
undertaken during the day, and how long is spent in each activity. Each individual is assigned an 
activity schedule depending on their demographic data and their role within their household.  
 
The third step determines the location where each activity of each individual takes place. This 
assignment is performed by an algorithm that accounts for the home address of the individual, the 
spatial distribution of all locations at which the activity occurs, and the number of people 
participating in the activity at each location (e.g. the business directory data specifies the number of 
employees of various job categories by address).  
 
The fourth step, partitioning, divides each location into the appropriate number of mixing rooms, or 
sub-locations, for each activity type. Thus a school location is partitioned into classrooms, work 
locations are partitioned into mixing groups, shopping malls are partitioned into stores, etc. Finally, a 
small subset of the population is selected to represent the initial infected index cases.  
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A model of the disease progression of pandemic influenza has been build and implemented into 
EpiSimS. The model implements the details of progression thorough incubation stage, with data-
based transition times to infectiousness and onset of symptoms. The duration of the infectious stage 
is also drawn from data-based histograms. A subclinical disease manifestation has been 
implemented, and accounts for one third of all infections. Persons with subclinical manifestations 
continue with their normal pattern of activity, and are contagious although at a lower rate than 
symptomatic persons. The disease model accounts for behavior modification in infected persons: a 
symptomatic person may forego his normal activities and instead remain at home. The disease model 
is intended to allow for examination of alternative strategies of treating pneumonia complications, 
but this capability has not been pursued in the Los Angeles case study. A fatality rate of 2% of 
symptomatic cases regardless of age is used for consistency with the 1918 Spanish flu pandemic. 
The effectiveness of available antiviral medications and vaccines are represented at a moderately 
detailed level. Scenarios involving response with these treatments have been constructed to be 
consistent with current stockpiles, and near-term projected stockpiles. 
 
Historical stage duration distributions for incubation and infectiousness of influenza have been 
implemented into EpiSimS as half-day histograms, based on survey literature. A basic disease 
manifestation has been developed, having four primary disease states (incubating, subclinical, 
symptomatic circulating, and symptomatic non-circulating), plus three additional states (susceptible, 
recovered, and dead). The transition parameters, stage duration histograms, infectiousness depend on 
the age, and on whether, when, and what treatment has been given. For convenience, four age groups 
are implemented as different disease manifestations. Also for convenience, the four primary disease 
states have been expanded to thirteen to explicitly represent the treatment states. 
 
The base case scenario specifies a target attack rate (i.e. the fraction of the population that gets 
infected during the epidemic) of 25% in the absence of effective treatments. Since the number and 
strength of contacts are unknown prior to running the simulation, the infectiousness had to be 
calibrated to produce the target attack rate. A scoping model, epiHist, was developed to project the 
epidemic curve, obtained by an EpiSimS simulation of a few days of the epidemic, to completion. 
The calibration process found a basic adult-to-adult infectiousness value of 0.00285 transmission 
probability per hour per infectious person per susceptible contact. This value is about 60% lower 
than our original estimates based on the literature. This basic infectiousness applies for household 
and work contacts, and a reduced infectiousness applies to casual contacts such as might occur while 
shopping.  
 
Several computational advances have been implemented into EpiSimS, resulting in significant gains 
in efficiency. A new algorithm has reduced the time required to initially distribute individuals and 
locations to processors from 4 hours down to only 45 minutes, for the Los Angeles scenario. By 
aggregating locations into links, the simulation can now assign persons to sub-locations (i.e. mixing 
rooms) more efficiently. Several new scripts rapidly extract select data from the large EpiSimS 
output event files. EpiSimS has been successfully ported to a 64-bit architecture cluster. 
 
Two main sets of results are reported in the Los Angeles Case Study. The first are for an influenza 
pandemic in which no effective vaccine or antiviral treatments are available. The second examines 
the impact of various outbreak response strategies. 
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The base case influenza pandemic (with no effective antiviral or vaccine) shows an early growth rate 
of 7.2%, corresponding to a reproductive number of 1.34. The epidemic grows from 202 index cases 
to a peak of 65,278 new infections per day on day 125. The peak incidence rate is attained on day 
129, when 2.41% of the population is in some stage of infection. At the peak, 1.1% of the population 
is symptomatic. About 25% of the population gets infected, including subclinical cases. 
 
More infections (44%) are acquired at home than anywhere else, followed by work (29%) and 
school (19%). The epidemic displays an early wave of school-acquired infections. 
 
During the Los Angeles case study calibration process, it was discovered that the expected number 
of transmissions per infectious person follows a power-law dependence on the susceptible fraction of 
the population. This potentially important observation results in a much smaller attack rate for a 
given reproductive number, relative to traditional epidemic modeling with a homogeneous mixing 
assumption. An article on this discovery has been accepted for publication in Mathematical 
Biosciences. 
 
Some visualization products have been created to show the spatial distribution of infection through 
the course of the epidemic. For the Los Angeles Case Study, the epidemic curve as a fraction of the 
population is uniform across the five counties. There is some interesting spatial structure, but some 
further tools and analysis are required for statistical analysis of the spatial dynamics of epidemics. 
 
The impact of antiviral medication has been examined in a series of EpiSimS simulations. The 
antiviral scenario assumes that a fraction of symptomatic persons are diagnosed, make a list of their 
contacts, and that a fraction of these contacts are traced and treated. The implementation of contact 
tracing also would apply for a contact-tracing & quarantine strategy. The resulting epidemic curve 
and total number of infections is stochastic, and depends on the fraction of contacts that get named, 
and the fraction of named contacts that get traced, and on when the contact tracing response is 
initiated. For reasonable naming and tracing fractions (all household members, most classmates and 
coworkers), even partially effective antivirals are found to effectively prevent an epidemic. 
 
For mass vaccination, assuming roughly the same vaccine effectiveness as in normal flu seasons, 
EpiSimS simulations show that vaccination of ~40% of the population (as occurs during most flu 
seasons in the US) will effectively prevent an epidemic. Vaccination of ~20% of the population (as 
occurred during the 2004-2005 flu season), whether given at random or target to children and 
seniors, reduces the size of the epidemic, but the epidemic is still substantial. 
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1 Introduction 
This Los Angeles Case Study represents a milestone in the developmental progression of EpiSimS. 
A set of new epidemic modeling capabilities has been implemented and verified, so that disease 
dynamics can be simulated when various outbreak control strategies are employed. A detailed model 
of pandemic influenza has been implemented into EpiSimS, adding to the capability to model 
smallpox and plague. EpiSimS has been extended to model targeted vaccination strategies, contact 
tracing with antiviral medication, and transmission reduction by behavior modifications, such as 
wearing of masks.  
 
A synthetic population has been constructed which includes over 16 million individuals, 
representing the 2000 US census data for the five counties of Los Angeles, Orange, Riverside, 
Ventura, and San Bernardino. These counties, plus San Diego county, have been represented 
physically in EpiSimS as 562,452 locations. There is a rough correspondence between EpiSimS 
locations and US Census blocks (some census blocks map to locations, some map to more than one 
location). 
 
Several computational advances have been implemented into EpiSimS, resulting in significant gains 
in efficiency. A new algorithm has reduced the time required to distribute individuals and locations 
to processors from 4 hours to 45 minutes, for the Los Angeles scenario. By aggregating locations 
into links, the simulation can more efficiently assign persons to sub-locations (i.e. mixing rooms). 
Several new scripts rapidly extract select data from the large EpiSimS output event files. Several 
synchronization strategies have been examined and quantified. EpiSimS has been successfully 
ported to a 64-bit architecture cluster. 
 
There are two main results sections. The first describes the EpiSimS simulation results for an 
influenza pandemic in which no effective vaccine or antiviral treatments are available. The 
simulation results are presented from an epidemiological point of view. A detailed analysis of the 
hospitalization rates is presented. The second group of results examines the effectiveness of various 
outbreak response strategies, including contact tracing with antiviral treatment, various targeted 
strategies of delivering vaccination, and wearing of masks. 

2 EpiSimS Simulation Set-up 

2.1 Construction of the Synthetic Los Angeles Population 

The population is constructed from the 2000 US Census data, counting those people that reside in 
households. The synthetic population currently does not include the ~3% of the real population that 
reside in institutions or other group quarters. The included counties and the number of individuals 
represented in each are shown in Table 2.1-1. The number of census tracts in each county is also 
given. 
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County Population Census tracts 
Los Angeles 9,366,843 2028 
Orange 2,812,102 573 
San Bernardino 1,672,705 241 
Riverside 1,514,716 342 
Ventura 740,166 154 
Total 16,106,535 3338 
Table 2.1-1. Breakout by of the number of individuals in 
the synthetic population 

Prior to running simulation scenarios on Los Angeles, population demographics, people’s daily 
schedules, the initial health state of each person, daily activity participation per location, the disease 
manifestation and treatments, and an array of scenarios must be assembled in a form usable by 
EpiSimS. This information is contained in Demographics, Schedule, Health, Partition, Disease 
Model, Scenario, and Configuration model files. The original Los Angeles population data comes 
from UPMoST as Person, Household, Activity, and Location entity files and is further processed, 
filtered, and reformatted for EpiSimS. The model files were created containing the population 
demographics, people’s daily schedules, the initial health state of each person, daily activity 
participation per location, the disease manifestation and treatments, and an array of scenarios. The 
creation order and dependencies of each of these model items is shown in Fig. 2-1. The software 
tools used are also noted.  

This collection of model files and a set of run-time configuration parameters comprise the 
configuration for one simulation run. The Disease Model, Demographics, Schedule, and Partition 
stay constant over all runs. The initial health states of the population can vary. Different Scenarios 
are defined for each run based on the disease and interventions being explored. 

A Sample facility is available to create a subset of a larger population for testing and debugging 
purposes, resulting in subsets of the original Demographics, Schedule, Health, and Partition model 
files. Further description of the individual model elements follows. 
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Fig. 2-1. Generation of model files required for run configuration. 

UPMoST Population – Person, Household, and Activity Data 

The UPMoST team generated the synthetic LA population of over 16 million people, composed of 
person, household, location, and activity data in the form of entity files from the 2000 US Census 
Bureau Data, the September 2004 Dun and Bradstreet Business Database , the National Household 
Travel Survey, the National Center of Educational Statistics, and January 2004 NGA Emergency 
Response Services. Each entity of a particular type has a unique identification number. The LA 
synthetic population represents Ventura, Los Angeles, San Bernardino, Orange, Riverside counties, 
with some work locations in San Diego county. 

Person data (entities.persons-la file) contains age, gender, working status and household ID. 
Household data (entities.households-la file) contains the number of people in a household, number 
of workers, household income, household location ID, household link ID, state code, county code, 
tract code, and block group code. A link represents an aggregation of locations. Activity data 
(entities.activities-la.* files) contains the type, start/stop times, location ID, link ID, and 
transportation mode for each activity in a person’s day. UPMoST activity types include work, 
school, retail, other, serve passenger, home, college, daycare, visit, social, service, meal, and 
medical. UPMoST also generates location data with additional zone, state, county, tract, block 
group, block, and block key information. 
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EpiSimS does not use the UPMoST entities directly; they are processed into the model files required 
for running simulations. 

Demographics Generation 

UPMoST Person and Household information for LA was used to generate demographic data for each 
person in the simulation. This includes each person’s ID, age, gender, worker status (worker or not), 
household ID, household location ID, household link ID, and household income. The Perl script, 
createStaticEntities.pl, was used to extract and combine the relevant UPMoST data into a 
StaticEntities file. This contains all the possible synthetic individuals available for a simulation. It is 
also used by other generation facilities. 

There are 16,106,535 people available for a simulation. An example of part of the StaticEntities file 
follows. The first line contains the header. 
 
# ID TIME TYPE X Y Z HHID AGE GENDER WORKER HHLOC HHLINK HHINC 
101 0 P 0 0 0 1 52 1 1 603415 24177694 202000 
102 0 P 0 0 0 1 52 2 1 603415 24177694 202000 
103 0 P 0 0 0 1 27 2 1 603415 24177694 202000 
104 0 P 0 0 0 2 24 1 0 615361 24184499 0 
105 0 P 0 0 0 2 22 2 0 615361 24184499 0 
106 0 P 0 0 0 2 5 1 0 615361 24184499 0 
107 0 P 0 0 0 2 25 1 0 615361 24184499 0 
108 0 P 0 0 0 3 48 1 1 604387 24178233 123130 
109 0 P 0 0 0 3 44 2 1 604387 24178233 123130 

Schedule Generation 

The LA UPMoST Activity and Demographics information was used to generate a schedule for each 
person’s activities in a day starting at home at midnight till the end of the day. The BuildSchedule 
program was used to create multiple files containing the schedule information (sched.1.1.* files). A 
person’s schedule contains departure/arrival pairs from one activity to the next continuously through 
a typical day. These files were indexed by person ID (using Berkeley DB) to allow for fast access to 
individual schedules. The aggregated locations, or links, were used as the locations for efficiency. 

 Activities for UPMoST and EpiSimS are not all the same. EpiSimS’ activities consist of home, 
work, school, college, shop, social recreation, visit, serve passenger, and others. The UPMoST 
activities are mapped into EpiSimS activities (see Table 2.1-2). Some of the UPMoST activities are 
mapped to the EpiSimS activities because they are similar in characteristics. In EpiSimS, work 
activities are modeled such that workers always go to the same location and room day after day. The 
UPMoST daycare activity is mapped into the EpiSimS work activity since children in daycare also 
typically go to the same location and room. The EpiSimS shop activity is modeled such that a 
shopper goes to a different shopping area every day. The UPMoST service, meal (dining out), and 
medical (doctor’s appointment) activities are mapped to shop.  
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UPMoST Activity Type EpiSimS Activity Type 
home home 
work, daycare work 
school school 
college college 
retail, service, meal, medical shop 
social social recreation 
visit visit 
serve passenger serve passenger 
other other 

Table 2.1-2. The UPMoST activity types are mapped to EpiSimS activities for daily schedule 
generation. 

In an EpiSimS simulation, each person moves from location to location participating in different 
activities throughout a typical day defined by their schedule. People can deviate from their schedules 
based on the scenario defined. For example they will self-isolate at home while they are 
incapacitated based on their disease state if self-isolation is defined in the scenario.  

An example of part of person 101’s schedule follows. Person 101 starts off at his home at location 
24177694 at midnight. At 6:30 AM he leaves for college, arriving for a class at 6:45. After that he 
returns home at 8:15 and then leaves for a shopping trip at 10:15. 
 
00:00:00 24177694 101 4 1          Person 101 starts off at their home  
06:30:00 24177694 101 1 23915724   Departs for a new location 
06:45:00 23915724 101 0 8          Arrives at location for college activity (8) 
08:00:00 23915724 101 1 24177694   Departs for new location 
08:15:00 24177694 101 0 0          Arrives back home for home activity (0) 
10:15:00 24177694 101 1 110158614  Departs for new location 
11:00:00 110158614 101 0 2         Arrives at location for shop activity (2) 
... 

Partition Generation 

Partition information is generated from the schedule information. All the possible locations are 
enumerated and the total number of people that participate in each activity at each location is 
collected from all the schedules. The EpiPartition program was used to generate the LA partition 
file, partition_1.1.0. In the case of LA, we used the aggregated locations, or links, as locations. The 
simulation uses the partitioning information during initialization to assign the locations randomly to 
processors when running and to determine the number and type of buildings and rooms created at 
each location. 

The LA partition file contains 562,525 locations. A few lines from this file follows. Each line 
represents one location. The total number of people participating in each activity per day at each 
location is shown. 
 
                           Activities Available at Each Location 
             home work shop visit social other serve school college 
                                               -rec         -pass 
24177694 0 15 0 0 1 0 0 0 0 0 
23915724 0 123 42 215 33 170 12 63 0 723 
110158614 0 49 11 157 5 0 1 19 0 0 
110126576 0 249 1349 5902 102 1 57 731 0 0 
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Health Initialization 

An Initial Health disease state is specified for every person. The population entity files are imported 
to a local database so that the population can be conditionally divided into groups dependent on 
demographics. The Initial Health program also uses the Disease Model manifestations so that the 
states can be viewed and assigned (see Fig. 2.1-2). Normally, a large percentage of the population is 
assigned to an uninfected disease state and a very small percentage is assigned an infected state.  The 
LA Case Study started with a total of 202 index cases who were randomly chosen from each of the 
demographic groups. This subset was put into the latent incubating disease state in the disease 
manifestation appropriate to their age demographic. 

 

Fig. 2.1-2. The Initialize Health tool was used to assign the LA population’s initial disease states. 

The time field (HH:MM:SS) indicates the time spent in a disease state prior to the beginning of the 
simulation. The LA Case Study used times of 00:00:00 in all health files. Several sets of initial 
health input files were made for the entire population, using different random seeds to get different 
index cases. In addition, initial health input files were created for all reduced-population sample 
files. 

Sample Generation 

Sample generation creates smaller-sized subsets of a city’s original population that are a fully 
connected by the activity locations they share. Samples are generated from the city’s original 
Schedule and Demographics. The set of people in a sample are stored in a database and a subset of 
the city’s schedule is extracted. Samples are typically created of size 1K, 10K, 100K, and 1M to be 
used for debugging and disease manifestation calibration. 
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The Sample program is used to extract small populations out of big ones. A randomly selected 
subpopulation doesn't work well to test EpiSimS, because connectivity decreases as the population 
becomes smaller and smaller. As the subpopulation becomes smaller, more and more people are 
walking into empty rooms. Care must be taken to choose people who are connected to others in the 
subpopulation. This is done iteratively. A location is picked at random. All people who spend time at 
this location are added to the subpopulation. As people are added to the subpopulation, all others in 
that person's household are added as well. As people are added to the subpopulation, their schedules 
are written to a schedule file, and all the locations they visit are added to a heap of locations. When 
everybody has been added from the targeted location, another location is picked from the heap of 
locations, and the iteration continues until the subpopulation achieves its desired size. 

2.2 Scenario Generation 

The EpiSimS configuration file contains the many configuration parameters that are used to set up 
the scenario and to control the simulation run. The configuration keys are used to specify input and 
output files and directories, computer architectural details, sublocation modeling, treatment response 
parameters, mapping of UPMoST activity types, and specific run variables such as number of days 
to run and how often to capture output. The configuration file is specified along with the executable 
file when a simulation is invoked. 
 
The configuration file is formatted as key/value pairs. One entry, for example, specifies that 
EpiSimS set the key UPMOST_ENTITY_FILE to point to the file $data_dir/entities/StaticEntities, 
which contains the population demographics data. Additional key/value pairs in the configuration 
file specify:  

 The schedule file that gives the daily schedule of each person in the population. 
 The initial health file that gives the initial disease state and resident time in that state for each 

person and a transmission coefficient group for each person. 
 The disease treatments used in this simulation run. 
 The disease manifestation file that specifies the disease model. 
 The scenario file that lists the exogenous events in the simulation: what treatments will be 

applied and when; a list of contamination events if any; and when self-isolation, social 
distancing and masking behaviors begin. 

 The partition file that lists the number of people at an activity at a location. It is either 
calculated as the total number of people per day or the maximum number per hour in a day. 

 A directory for writing output files that record the time and simulation messages. There is a 
log file created for each processor running the simulation. At the end of simulation run each 
processor calculates statistics for event handling, synchronization, and CPU usage.  

 A set of events output files that record all the disease and treatment statistics. There is an 
event file written by each processor and the events are sorted and merged in post-processing 
analysis. The three types of events recorded are exposure, treatment, and disease change.  

 A number that specifies (in seconds) how often to print output. 
 A set of sub-location modeling parameters giving target mean values for the number of 

persons in mixing groups of various kinds, such as students per classroom. The user can 
specify the number of mixing groups of various types, or specify that the partition algorithm 
compute the number of mixing groups at run time. 

 A set of consequence mitigation flags and parameters, specifying which treatment strategies 
are employed, and giving the fraction of contacts named and the fraction of named contacts 
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found, and the fraction of time that a mask would be worn, by demographic group and 
activity. 

 The names of headers in the entity file that map UPMoST categories to EpiSimS categories.  
 A set of simulation control parameters to select the synchronization method, the slack time, 

the algorithm used to assign locations to processors, the duration of the simulation, the 
number of CPU’s to use. 

 A set of parameters used to generate a dendrogram file representing the computed social 
network. Which demographic group – activity pairs are assigned to the same room each day, 
and which go to different rooms each day. 

 Whether to log information about specific persons or locations throughout the simulation. 
 A set of parameters to specify how a simulation will be saved or re-started.  

A contamination event is characterized by the time at which the contamination occurs, the infectivity 
factor of the contaminated room, which location or locations are contaminated, and which building 
types are contaminated.  

When a room is contaminated two things happen. First, the room moves out of its uninfected disease 
state into an infected disease state. Second, the room takes on the infectivity factor of the 
contaminate event. The room's net infectivity is the infectivity factor multiplied by the infectivity of 
the room's current disease state. Once the room is in an infected disease state, it follows its chain of 
disease states until it returns to the uninfected disease state. If there is a subsequent contamination 
event, the room's infectivity factor is changed to the infectivity factor of the latest contamination 
event. 

A user can specify that a contamination event will affect a single location or affect every location in 
the simulation. The user can also specify that a single building type is contaminated or that all 
building types are contaminated. This allows the full range from a contamination infecting a single 
building to a contamination infecting every room in town. If it is desired to infect a smaller 
geographic area, one can find a list of locations in that area and use one contamination event line per 
location. 

Mass delivery of treatment is characterized by the time that the mass delivery begins, the treatment 
to be delivered, the number of available doses, the number of treaters, the average time it takes to 
make a delivery, and the range of ages to be treated. Treatment is delivered randomly, household by 
household, till the number of available doses have been delivered. If there is more than one delivery 
of the same treatment, the doses are apportioned relative to the fraction of people in each delivery's 
age group. For example, say there are two deliveries, one for the young, who comprise 7% of the 
population, and another for the very old, who comprise 3% of the population. If there are 100,000 
available doses of an antiviral, the antiviral would be used up when 70,000 kids and 30,000 very old 
have been treated. 

The number of treaters, on the other hand, are specified per delivery. There might be 200 treaters 
available to treat the young and 100 to treat the old. Each treater delivers treatment to one household. 
The time per delivery is the average amount of time that will be spent to deliver treatment to the 
people in a single household. If an age range is specified, only the people in that age range are 
treated. If no one in a household is in the age range, a treater will not be sent to that household. 

The configuration key EPI_HOME_FRAC_FOUND can be used to decrease the number of people 
who are treated. When a person is found at home, this key value is compared to a random number. If 
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it is less than the random number, the person is not treated. When set to true, the configuration key 
PRE_MASS_TREATMENT specifies that all the available doses are distributed before the 
simulation begins. 

Ring delivery of treatment is characterized by the time that the ring delivery begins, the treatment to 
be delivered, the number of available doses, the number of treaters, the average time it takes to make 
a delivery, the range of ages to be treated, the attribute that triggers delivery, and the threshold value 
of the attribute that triggers delivery. As in mass delivery, the available doses are shared among 
multiple ring deliveries. In fact, if mass delivery and ring delivery are specified for the same 
treatment, the available doses are shared between ring and mass delivery. The standard CDC policy 
is to attempt ring delivery early in an epidemic. If the epidemic gets out of hand, mass delivery is 
instituted to reach more people quickly. The trade off is that more doses are wasted on people who 
have not yet been exposed. 

Treaters are specified per delivery. They are not shared among ring or mass deliveries. In ring 
delivery, a treater is sent out whenever somebody triggers delivery, for example, by becoming 
symptomatic. The treater locates and treats a fraction of those individuals who came in contact with 
the symptomatic person. Disease states have three independent attributes named prodrome, 
symptoms, and incapacitation. Each of these attributes can be assigned an integer value. Ring 
delivery is triggered when the specified attribute reaches a threshold value. For example, if the 
trigger value of prodrome is 3, a person will be contact traced when his prodrome value becomes 
greater or equal to 3. By using two scenarios it is possible to trigger a person for contact tracing 
when his prodrome reaches 3 or his incapacitation reaches 1. 

The group of people who will be treated varies by the activity of the target person. For the activities 
of home and work, every person in the same room with the target person is treated. For school and 
college, every person in the building at the same time as the target person is treated. For the visit 
activity, everybody who was in the room on the previous day is treated. No one is treated for the 
shopping, social recreation, or the activity named "other". 

There are configuration keys that modify how many people are found in each activity. The keys 
EPI_HOME_FRAC_FOUND, EPI_WORK_FRAC_FOUND, and so forth decrease the number of 
people found for treatment. 

Self-isolation is characterized by the time at which self-isolation begins, the attribute that triggers it, 
and the threshold value of the attribute that triggers it. Disease states have three independent 
attributes named prodrome, symptoms, and incapacitation. Each of these attributes can be assigned 
an integer value. Self-isolation is triggered when the specified attribute reaches a threshold value. 
For example, if the trigger value of symptoms is 3, a person will go into self-isolation when his 
symptoms value becomes greater or equal to 3. When a person is scheduled to move to a new 
location and he is triggered for self-isolation, he will go home instead of going to his next 
destination. When his disease state attributes fall below the trigger values, he will once again resume 
his ordinary schedule. 

Mask alert events are characterized by the time at which the mask alert occurs, and the name of the 
mask which is recommended. The user supplies a list of masks in a mask file. Each mask listed in 
the mask file has a name, two fractions which specify effectiveness, and the minimum age for of this 
mask. The effectiveness is measured by the ability of the mask to protect the user from infection by 
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others and by the ability of the mask to protect others from the user. The effectiveness of various 
types of masks are listed in Table 2.2-1. 

 
Mask name EffectivenessToOthers EffectivenessToSelf MinAge 
bandana 0.1 0.1 6 
dust_mask 0.13 0.13 6 
dentist 0.34 0.34 6 
surgical 0.50 0.50 6 
sick_patient 0.50 0.50 6 
N95 0.97 0.97     6 
N95+ 0.0 0.97 6 
Table 2.2-1. Mask effectiveness. 

The scenario input are the exogenous events that occur for different runs of the study. Throughout all 
the runs for this case study we specified a “self-isolation” event would occur whenever a person had 
an incapacitation of 1. This was necessitated by the Disease Model which differentiated between 
circulating and non-circulating disease states.   

The treatments are also triggered by specifying the corresponding scenario input. A mass delivery of 
vaccine with a specified number of doses and treaters is used to implement a 20% vaccination 
strategy, for example. Targeted delivery of treatment is specified by including age range parameters 
for delivery. Ring delivery of antivirals is specified by triggering on a disease state attribute. For this 
study we used Symptom >= 1 and started all treatments at time 00:00:00. 

The scenario development and specification is dependent on the Disease Manifestations and the 
Simulation model capability. It reflects the design of the Case Study. The scenario files can be 
created by an editor or using the Scenario Builder GUI tool, shown in Fig. 2.2-1. 

 

Fig. 2.2-1. The Scenario Builder tool can be used to create scenarios, such as the scenario with 20% 
uniform vaccination and self-isolation. 
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3 Pandemic Influenza Disease Modeling 

3.1 Influenza Disease Progression 

For pandemic type-A influenza, the WHO pandemic planning scenario takes a cumulative clinical 
attack rate of 25% of the population, in one or two waves of approximately 12 weeks each. The 
1918-1919 H1N1 Spanish flu pandemic caused 20-40 million deaths worldwide, with some 
estimates over 100 million. It infected ~23% of the UK population [UK Dept of Health Plan, 2005]. 
The 1957 H2N2 Asian flu caused 2M deaths worldwide, and the 1968 H3N2 Hong Kong flu caused 
1M deaths. In normal flu seasons, epidemic influenza typically infects 5-10% of the general 
population, and accounts for 30-40 thousand fatalities in the US, primarily among the elderly.  

The following presents a brief overview of information relevant to the modeling of avian-related 
pandemic influenza in EpiSimS. The basic progression of an influenza infection is through an 
incubation stage, followed by a symptomatic stage, followed by recovery or death. An infected 
person is most contagious in the two days immediately following the onset of symptoms. In addition 
to this basic progression, there are variants in the manifestation of influenza, including a subclinical 
manifestation and several types of complications.  

There are three categories of data to support estimates of the disease characteristics of the next 
pandemic flu: historical flu pandemics, normal epidemic flu seasons, and human cases of avian flu 
acquired directly from birds. Historical pandemic influenza typically displayed higher 
infectiousness, more rapid disease progression, and higher fatality rates among young adults than 
seasonal epidemic influenza. 

Incubation Stage 

For influenza types A and B, several sources [Merck Manual, virology-online.com/ viruses/ 
influenza.htm] state that the incubation stage lasts 48 hours. However, an examination of historical 
case records [Longini 2004] found that the incubation period of epidemic influenza ranges from one 
to three days (30% of cases incubate for 1 day, 50% for 2 days, and 20% for 3 days). The average 
incubation stage duration corresponding to this histogram is 1.9 days. 

The EpiSimS stage duration histogram is formulated with intervals all of the same duration. To best 
accommodate the one-day histogram data, it was most appropriate to formulate a histogram in terms 
of the fraction of cases that transition during half-day intervals. The incubation stage sojourn time 
distribution is described by the half-day histogram {0, 0.12, 0.18, 0.259, 0.238, 0.13, 0.07, 0.003}, 
giving respectively the fraction of cases that incubate for a period of between 0 and 0.5 days, 0.5 and 
1.0 days, etc. before transitioning to the infectious stage. 

The half-day histogram gives an averaged incubation stage duration of 1.9 days, which matches the 
one-day histogram exactly. The validity of the half-day histogram is further checked by comparing 
the resulting cumulative distribution function with that of the integral-day histogram. This 
comparison is shown in Fig. 3.1-1, where it can be clearly seen that the EpiSimS half-day histogram 
is consistent with the original histogram. 
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Fig. 3.1-1. Fraction of cases still incubating/latent, as a function of time after infection. The 
solid squares represent the integer-centered, one-day histogram values from Longini. The 

diamond markers show the CDF for the half-day EpiSimS formulation histogram. 
 

This half-day histogram replaces a previous EpiSimS implementation of influenza in which the 
incubation/latent stage duration was uniformly distributed from 1.0 to 3.0 days. 

Symptomatic Stage 

The first symptoms are headache, chills and a dry cough, followed by fever. The 2005 UK influenza 
plan asserts that the symptomatic stage duration is four to five days for adults, two weeks for 
children, and three weeks for immunocompromized persons. Anecdotal reports claim that even 
though symptoms may last 2 or 3 weeks, cases are only infectious for the first few days of 
symptoms. Based on examination of historical case data, [Longini 2004] gives an average infectious 
stage duration of 4.1 days, with 30%, 40%, 20% and 10% of symptomatic cases having symptomatic 
stage durations of 3, 4, 5 and 6 days, respectively. [Hyman, 2003] also gives an average infectious 
period for H3N2 of 4.1 days. 
 
Longini’s data has been used to construct a half-day resolution histogram for use in EpiSimS, as 
follows: The infectious stage sojourn time distribution is described by the histogram {0, 0, 0, 0, 
0.005, 0.125, 0.16, 0.205, 0.205, 0.12, 0.08, 0.06, 0.04}, giving the fraction of cases that are 
infectious for 0 to 0.5 days, 0.5 to 1.0 days, etc. The average case is infectious for τI=4.1 days. Fig. 
3.1-2 shows a comparison of the cumulative density function of Longini’s histogram and the half-
day EpiSimS histogram. 
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Fig. 3.1-2. The fraction of cases that remain infectious at given times after onset of infectiousness. 

A previous EpiSimS implementation of influenza had a symptomatic/infectious stage duration 
uniformly distributed from 3.0 to 6.0 days. 

Subclinical Manifestation 

[Elder, 1996] studied 518 unvaccinated health care workers during the mild 1993-94 influenza 
epidemic in Glasgow. 23.2% were found to have serum antibodies to the influenza strain that 
circulated during the season, indicating they had contracted influenza. This gives a direct 
measurement of the attack rate among unvaccinated healthcare workers. Of those that had been 
infected with influenza: 41% recalled having influenza, 32% thought they had a non-flu respiratory 
illness, and 27% thought they had no illness. Thus, this study indicates that 27% of infections were 
sub-clinical in the subject population. 

Citing Elder, Longini models that 1/3 of infections are subclinical, and 2/3 are symptomatic. He also 
asserts that subclinical cases are half as infectious as symptomatic cases. The 2005 UK influenza 
plan asserts 50% of cases produce no symptoms, and that children are more likely to have 
subclinical cases. During the “Hong Kong” pandemic of 1968, subclinical infections (producing no 
symptoms, or symptoms of a mild cold) accounted for 75% of H3N2 cases.  

Based on [Longini 2004], the disease model in EpiSimS takes one-third of infections to be sub-
clinical. Sub-clinical cases do not exhibit symptoms, but they do become infectious. Sub-clinical 
cases are taken to be half as infectious as cases that exhibit symptoms. Their incubation and 
infectious stage durations follow the same histograms as those cases that do exhibit symptoms. 
Individuals with sub-clinical manifestations continue their normal activities during their “illness”. 

Complications 

There are three main complications associated with influenza. These are 1) bronchitis, 2) primary 
viral pneumonia, and 3) secondary bacterial or viral pneumonia. About 20% of influenza cases are 
complicated by bronchitis (or tracheobronchitis or bronchiolitis). Diabetics, persons with ischemic 
heart disease, and persons over 60 are especially susceptible to bronchitis-related complications. 
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Pneumonia refers to many diseases that involve infection or inflammation of the lungs. [American 
Lung Association Pneumonia fact sheet]. In normal epidemic flu seasons, most flu-attributed deaths 
are caused by secondary pneumonia. The 1918-1919 pandemic influenza, however, also killed its 
victims through primary viral pneumonia (i.e. pneumonia caused directly by the influenza viral 
infection) [Barry 2004].  

Secondary bacterial pneumonia co-infections (caused by several species of bacteria, including 
Staphylococcus aureus, S. pneumoniae, and Haemophilus influenzae) usually occurs late in the 
course of the disease when the primary viral infection is abating [virology-online.com/ viruses/ 
influenza.htm]. Flu vaccination cuts risk of pneumonia complications in half. In the 1957 pandemic, 
28% of cases with staphylococcal pneumonia died, while only 12% of non-staphylococcal 
pneumonia cases died [UK Health Departments’ influenza pandemic contingency plan annex C.] 
Deterioration can be so rapid that persons entering the hospital die within 48 hours, so antibiotics did 
not get administered in time. In the 1957 pandemic, the fatality rate of cases with pneumonia 
dropped from 20% to 13% as doctors realized that pneumonia had to be treated immediately. 

About 50% of influenza-associated secondary pneumonia cases are viral. There are no treatments for 
viral pneumonias. There is a viral-pneumococcal vaccine, which is 80% effective in adults, but less 
effective in high-risk demographics. 

Transmission 

Transmission is person-to-person via inhaled aerial droplets and fomites (i.e. moist material in 
bedding or other cloth). 10% of cases begin shedding virus “just before the onset of symptoms” [UK 
pandemic plan], while the remainder begin shedding after onset of symptoms. Alternatively, the 
CDC and WHO influenza fact sheets give that infected persons may be contagious for up to one day 
prior to onset of symptoms, although at a lower level of contagiousness. 

The infectiousness during the symptomatic/infectious stage is age dependent. The baseline 
infectiousness (i.e. the probability per hour that a particular susceptible person will become infected, 
given that there is one symptomatic infectious adult or senior in the same room at the same time) is 
0.00285 transmissions per hour. This baseline infectiousness was selected to give an epidemic that 
infects about 25% of the population. The probability that a susceptible person becomes infected 
during a visit to a room depends on: how many infectious persons co-occupy the room, how long 
each contact lasts, the type of activity, and the infectiousness category of the infectious person 
[Eubank 2004]. Symptomatic children and preschoolers have twice the baseline infectiousness, i.e. 
0.0057 transmissions per contact-hour. Subclinical persons have half the infectiousness of 
symptomatic persons in the same demographic. 

Since EpiSimS takes infectiousness input as transmission probability per infectious person per 
symptomatic person per minute, the EpiSimS infectiousness input values are 0.0000475 per minute 
for symptomatic adults and seniors, 0.00002375 for subclinical adults and seniors, and 0.000095 for 
symptomatic children and preschoolers. 

Self-isolation and Hospitalization 

The [Elder 1996] study found that only 48% of healthcare workers infected with influenza took sick 
leave. [Longini] asserts that 80% of preschoolers withdraw to the home when symptomatic, as do 
75% of school agers, and 50% of adults. Persons who withdraw to the home then can only infect 
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household members. EpiSimS models that half of symptomatic adults and seniors, 75% of 
symptomatic school-agers, and 80% of symptomatic pre-schoolers will remain home during their 
symptomatic stage. These “self-isolators” would thus not transmit the disease to anyone except 
members of their own household and visitors to the house. Those symptomatic persons that do not 
remain at home are designated circulating, and continue with their normal pattern of contacts. 

[Halm 2002] gives ~4M cases of community-acquired pneumonia per year in US, leading to 1M 
hospitalizations per year, costing 9B$/year (average 9k$/admission). On average, there are 11.375 
restricted-activity days per case, and 6.56 bed-days per case.  

A baseline flu-season activity level is defined as 0.03% of population seeking flu-related new 
general practician consultations per week [UK influenza plan, 2005]. During a pandemic, this grows 
to at least 0.5% per week. The 1969/70 pandemic hit a peak of 1.26% new consultations per week 
for flu. 

The decision to admit a patient to a hospital is based on the Pneumonia Severity Index, which 
assesses age, disease history, and vital signs to rank cases into low (risk levels 1, 2 and 3: 0.1, .6 and 
0.9% mortality), moderate (risk level 4: 9.3% mortality), and high risk (risk level 5: 27% mortality). 
The admission decision is not based on whether the pneumonia is bacterial or not. All moderate and 
high risk cases are admitted. 43-58% of low risk patients are admitted. There is an option for 23 hour 
inpatient observation of risk level 3 patients, during which they receive antibiotics and hydration. 
The median time to clinical stability and discharge is 3 days for low-risk patients, 4 days for 
moderate-risk patients, and 6 days for high-risk patients. Clinical stability is defined such that when 
a patient recovers to this level, there is a 1% risk of serious clinical deterioration. Clinical stability 
means that the fever is resolved, respiratory symptoms are improving, and the patient can take oral 
antibiotics. Patients still feel sick and may require weeks to return to normal activity after discharge 
from the hospital. 

There are 19k to 193k (mean 95k) hospitalizations per year in the US for which the primary hospital 
discharge category is listed as pneumonia or influenza, and which are associated with influenza virus 
infections. An additional 39k hospitalizations per year were influenza related, but had P&I listed as a 
non-primary discharge category. The total is 134k influenza-related hospitalizations per year (< 0.5 
per 1000 population per year). Seasons dominated by influenza A(H3N2) give more hospitalizations 
than other strains. Persons aged 85+ were hospitalized at a rate of 11.95 per thousand 
hospitalizations per year for P&I. Children under 5, and older adults (50-64) had 1.08 per thousand, 
hospitalizations per year for P&I. [Thompson]. 

Fatality 

The mortality worldwide for the Spanish flu (1918-1919) was 3 per 1000 of population in 1918, and 
a further 1.17 per 1000 in 1919. The 1957 flu had mortality of 2.3 deaths per 1000 population. 2/3 
were in persons over 55. [UK Health Departments’ influenza pandemic contingency plan annex C.]. 
For “normal” epidemic influenza, the age-averaged overall case fatality rate is 0.37% [UK influenza 
plan. 2005] (at 25% attack rate, a pandemic with .37% case fatality would have a mortality rate of 
0.925 deaths per 1000 of population.) 

In the outbreak in 1997 in Hong Kong, 18 persons were infected with influenza A(H5N1) through 
contact with birds. 6 died and 3 were severely ill. The H5N1 strain (avian) caused 97 confirmed 
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human cases in the 2003-2004 and 2004-2005 seasons. 53 were fatal: case fatality rate was 54.6%. 
All of these cases were probably contracted directly from birds. 

In cases complicated by pneumonia, the 30-day mortality rate (case fatality rate) is 5.1% in 
ambulatory out-patients and hospitalized patients, and 36.5% in patients requiring intensive care. 

For seasonal influenza, Longini gives the case fatality rate as 2% for seniors, 0.0294% for adults, 
0.0021% for school-agers, and 0.00263% for preschoolers. In order to simulate an avian influenza 
pandemic, based on the 1918 Spanish influenza, the EpiSimS pandemic influenza model specifies a 
case fatality rate of 2%, independent of age. 

EpiSimS Untreated Disease Manifestations 

The basic structure of the influenza disease manifestation consists of 7 states: uninfected, 
latent/infected, subclinical/infectious, symptomatic/circulating, symptomatic/not-circulating, dead 
and recovered. The flow paths between nodes is shown in Fig. 3.1-3 This configuration is the same 
as that given in Longini, and that was used in the previous EpiSimS influenza implementation.  
 

 
Fig. 3.1-3. Epidemic influenza disease manifestations for four age demographics, with no treatment. 
The manifestations for different demographic groups is obtained by using the appropriate self-
isolating fraction and infectiousness values. 

A separate disease manifestation of the form shown in Fig. 3.1-3 is implemented for each of four 
demographic categories: Pre-school (age < 5), Youth (age >= 5 and age < 21), Adult (age >= 21 and 
age < 65), Senior (age >= 65).  



 22 

The fraction of symptomatic persons that stay at home is: 50% of adults and seniors, 75% of Youth, 
and 80% of Preschoolers. The base infectivity levels in the disease manifestations are: 0.0000475 
transmissions per minute per contact for symptomatic adults and seniors, 0.000095 transmissions per 
minute per contact for symptomatic youth and pre-schoolers. For the sub-clinical infectious state, the 
infectiousness is half the base infectivity level.  

3.2 Vaccination and Antiviral Medication  

The Efficacy of Influenza Vaccine 

For seasonal influenza, influenza vaccine is typically 70% effective in preventing infection [Longini 
2004]. This number combines 1) the effectiveness of the vaccine against the three strains in the 
vaccine, and 2) the presence of strains that are not included in the vaccine. Those that are vaccinated 
and do become infected have their infectiousness reduced by a factor of 5, relative to unvaccinated 
cases (the infectiousness efficiency of vaccination is 79-80%). In addition, vaccination reduces the 
infectious stage duration by one day. 

The Efficacy of Antiviral Medications 

Over-the-counter medicines are widely used to treat symptoms. Antibiotics do not affect the virus, 
but may prevent or cure bacterial infection, especially bacterial pneumonia. There are four antivirals 
approved by FDA for influenza:  

• amantadine hydrochloride (Symmetrel),  
• rimantadine (Flumadine), also an amantadine 
• zanamivir (Relenza), a neuraminidase inhibitor  
• oselatamivir phosphate (Tamiflu), also a neuraminidase inhibitor  

Symmetrel and Flumadine are approved for treatment and prevention of influenza A, although CDC 
recommends its use only for prevention to avoid viral resistance. Symmetrel and Flumadine are ion 
channel blockers that target the M2 viral protein. However, the H5N1 strain (avian flu) has two 
mutations in the M2-producing gene making it resistant to adamantanes. Amantadine may prevent 
influenza if taken continuously at the time of an epidemic. It is not widely used against epidemic 
influenza, and is usually restricted to high-risk persons. Antivirals, especially adamantanes, lead to 
resistant strains of influenza [FDA] when used as preventative, and have adverse side effects. 

Tamiflu is approved for treatment and prevention of influenza A and B. Tamiflu is available in pill 
form. Tamiflu is more effective against some of the 9 NA types than others. It is most effective 
against N2. To achieve the same effectiveness, 10-30 times as much dose is required for N1 than for 
N2 types. 

Relenza is approved for treatment of influenza A and B. Relenza comes in the form of a nasal spray, 
and is not widely available.  

Treatment with antivirals is recommended to begin within 48 hours of the onset of symptoms. All 
four antivirals typically reduce the symptomatic period by 1-2 days if given within 48 hours of 
symptoms. The British plan is to stockpile enough Tamiflu to keep vital services and health care 
functional. Similarly, the CDC recommendations give highest priority for antivirals to workers in 
nursing homes, hospitals, and facilities caring for the immunodepressed. 
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Stockpile and Delivery of Antiviral Medication 

The Strategic National Stockpile, operated by CDC has large quantities of medicine and supplies for 
emergencies severe enough to cause local supplies to run out. Upon commitment, supplies can be 
delivered to any state within 12 hours. Each state is responsible to receive and distribute supplies to 
local communities. Their objective is to be able to supply several large cities simultaneously, 
particularly in the event of terrorist attacks or large-scale natural disaster. Each state or local 
community is responsible to provide information on how to get medicine via TV, radio, newspaper, 
internet, etc. 

Some of the supplies are organized into Push Packages, which are pre-positioned in strategically 
located, secure warehouses. In addition, the SNS uses vendor managed inventory (VMI) for follow-
on supplies that might be needed within 36 hours. Local stocks of medical materiel will be used for 
first response, then SNS will bolster the supplies with a combination of 12-hour push packages and 
VMI. Push Packages are accompanied by technical advisory response unit staff. 

The Strategic Reserves/Stockpiles was initiated in 2004 with 80M$ of funding. DHS invested 40M$ 
in 2004 and 40M$ in 2005 to stockpile 4.5M doses of influenza vaccine in the Vaccines for Children 
Program; 87.1 M$ to stockpile 2.3M regimens of tamiflu; and 34M$ on Rimantadine capsules to 
treat 4.25M adults and Rimantadine syrup to treat 750,000 children. The production rate of Tamiflu 
(made by Roche, Hoffmann) has been ~1.5M doses/courses per year. Roche plans to increase 
production to 4M courses per year, where a course is 10 pills. 

For the 2004-2005 flu season, Aventis Pasteur produced ~50M doses of flu vaccine, where ~100M 
doses were anticipated to be needed. After the shortfall was identified, the distribution of the 
remaining 22M doses were prioritized to: 

• state and local health departments 
• the Vaccines for Children Program 
• children’s providers 
• dept of veterans affairs and Indian health service 
• long-term care facilities and acute care hospitals 
• the Visiting Nurses Association of America 
• DOD. 

The CDC guidelines for use of antivirals provides for their use during normal flu seasons to protect 
persons at risk for complications. It is not intended to address pandemic flu seasons. In November 
2004, The Strategic National Stockpile held ~1.3M regimens of rimantadine tablets, 60,000 
regimens of rimantadine syrup, 859,993 regimens of oseltamavir capsules, and 110,336 regimens of 
oseltamivir suspension. Among antivirals, only oseltamavir/Tamiflu is effective against avian flu, so 
it is being held in reserve. 

In addition to flu vaccine and flu antivirals, pneumococcal vaccine can prevent a common 
complication of influenza. For the 2004-2005 flu season, Merck tripled its production of 
Pneumovax. 

Treatment with antivirals has four effects that are modeled in EpiSimS: prevention of infection, 
prevention of symptoms in infected persons, reduction of infectiousness of infected persons, and 
reduction of duration of symptomatic/infectious stage. If antivirals are given within one day of onset 
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of symptoms, the duration of the symptomatic stage is reduced by one day. Presumably, the duration 
of the infectious stage of the sub-clinical manifestation is similarly reduced by one day. 

[Longini 2004] models that a susceptible person taking antivirals has 70% as much likelihood of 
becoming infected as one not taking antivirals. If a person on antivirals does become infected, there 
is a 60% probability that the disease will not advance to the infectious stage. Persons on antivirals 
that do become infectious will transmit disease at one fifth the rate of those not on antivirals. These 
values have been used in the EpiSimS influenza disease model. 

Antiviral medication and vaccination treatments have been incorporated into EpiSimS by extending 
the disease manifestations to explicitly include treated and untreated variants of the disease states 
shown above for untreated influenza. Thus, each of the three untreated disease states are now 
accompanied by a similar state for persons having received vaccination, another for persons having 
received antiviral treatment, and a fourth state for persons having received both vaccine and antiviral 
treatment. The seven disease states used to implement untreated influenza are thus extended to 16 
disease states to allow for antiviral medication and vaccination. This rather awkward solution is 
needed because the antiviral and vaccine treatments change the stage transition histograms. Each of 
four demographic groups has a demographic-specific set of disease parameters, but the same 
structure of 16 disease stages. A diagram of the treatment-extended disease stages is shown in Fig. 
3.2-1. 
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Fig. 3.2-1. Expanded disease manifestation to account for antiviral and vaccine treatments. 
 
EpiSimS reads the detailed characterization of the disease model from a disease manifestation file. A 
GUI tool, BuildDiseaseManifestation, allows a user to graphically model the disease stages, 
transition histograms, effectiveness of treatments, and demographic dependences. The tool then 
automatically creates the disease manifestation file. The BuildDiseaseManifestation tool has an 
“Adjust Infectivity” function so that infectivity levels can be changed without reconstructing the 
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entire Disease Model. A partial screenshot of the BuildDiseaseManifestation tool is shown in Fig. 
3.2.-2. 
 

 
Fig. 3.2-2. The GUI-based BuildDiseaseManifestation tool. 

3.3 EpiSimS Infectiousness Calibration 

The first milestone in the course of running our disease model on a number of scenarios was to 
calibrate the infectiousness in the disease transmission model, in order to obtain a roughly 25% 
attack rate. In particular, the initial values for infectiousness, as first extracted from published 
literature, were tied to a basic adult-to-adult infectiousness of i0 = 0.005 transmissions per hour per 
infected person per susceptible person. This basic infectiousness rate applies for household contacts 
from symptomatic adults or seniors to susceptible adults or seniors. For symptomatic children, the 
household infectiousness is 2i0. For subclinical adults and seniors, the infectiousness is 0.5i0, and for 
household transmissions from subclinical children, the infectiousness is i0. The transmission 
occurring in non-household contacts are scaled from these household values. The calibration process 
determined the appropriate value for i0 so that EpiSimS obtained a scenario-specified attack rate. 

Because it is computationally expensive to run an EpiSimS simulation to completion for high attack 
rates with more than 16 million simulated individuals, a scoping model (EpiHist) was constructed so 
that the EpiSimS disease model could be calibrated with short runs (simulating a few weeks). The 
scoping model implements a non-stochastic uniform-mixing model, and uses the EpiSimS disease 
progression model with identical stage transition histograms. Scenario parameters, disease 
progression parameters, and disease transmission parameters can readily be varied. The number of 
remaining susceptible persons, the number of new infections, the number of persons becoming 
infectious, and the number of people dying or recovering is computed for each timestep. The number 
of people transitioning from incubating stage to infectious stage is computed by convolving the new 
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infections with the incubation-to-infectious histogram of sojourn times. Likewise, the number of 
people transitioning from infectious to recovered/dead is computed as a convolution of new 
infectious with the infectious stage sojourn time distribution. The scoping model is implemented in a 
an Excel spreadsheet which is about 4 megabytes in size and takes about 30 seconds to recalculate, 
when using timesteps of one hour.   

The scoping model takes that on average each infectious person would transmit the disease to R0 
new cases, if the entire original population were susceptible. As the fraction of the population that is 
susceptible decreases, the transmissions per infectious person decreases correspondingly. The 
transmission coefficient, giving the average number of new cases per day per infectious person, is 
formulated as ! = R

0
/ "

I( ) S / P0( ) . The first factor R0/τI is the number of transmissions per day per 
infectious person, where R0 is the average number of transmissions per case that would occur if the 
entire initial population of P0 was susceptible, and τI is the average infectious period duration. The 
second factor reduces this transmission rate to account for a reduction in the fraction of the 
population that is susceptible.   

To illustrate the process of calibrating the EpiSimS infectiousness with short simulations, Fig. 3.3-1 
shows the number of new infections per day from an EpiSimS simulation covering only 5.6 days, for 
a baseline infectiousness reduced to i0=0.00336 transmissions per hour per susceptible person per 
infectious person. The scenario shown is for 202 persons infected at time 0, with an initial 
population of 16.1 million persons. The number of new infections per day computed by EpiHist is 
also shown, where R0 has been adjusted to a value of 1.7 in order to best fit the EpiSimS result. We 
thus conclude that i0=0.00336 per hour corresponds to R0=1.7, when applied to the emergent social 
contact structure generated by EpiSimS. The scoping model can then immediately run the epidemic 
to completion, obtaining an attack rate of 70% of the original population.  

 
Fig. 3.3-1. Scoping model sample output for the first two weeks of an outbreak, demonstrating 
fidelity of dynamics on a sub-day timescale that can not be achieved with SIR-type models.  
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In order to obtain a target attack rate of 25%, the scoping model shows that the value of R0 should be 
1.15. The EpiSimS nominal infectiousness parameter was adjusted so that the few-day EpiSimS 
simulation gave a new infections per day curve that agreed with the EpiHist curve with R0 set to 
1.15. This value was then used in an EpiSimS simulation of the full epidemic. The resulting 
simulated epidemic had only a 12% attack rate, rather than the desired 25%.  
 
Close examination of the EpiSimS output discovered that the number of new infections per day per 
infectious person scaled with the susceptible fraction of the population raised to a power higher than 
1.0. This phenomena was explored is some detail, resulting in the formulation of a power-law 
mixing model to replace the traditional homogeneous mixing assumption that is found in most 
existing epidemiological modeling. This result is being published in Mathematical Biosciences. For 
the Los Angeles social contact structure that emerges from the activities of individuals in Los 
Angeles, the scaling exponent was found to be 2.06. The number of new infections per day per 
infectious person in the power-law mixing model is then given by α=q/I=(R0/τI)(S/P)2.06. With this 
formulation, we find that a reproductive number of 1.34 corresponds to an attack rate of 25%. This 
reproductive number was then found to correspond to an EpiSimS nominal infectiousness value of 
0.00285 transmission probability per hour, to give a good match between short EpiSimS epidemic 
curve and the EpiHist result, and further, that the full epidemic simulation with EpiSimS then gives a 
25% attack rate. 

4 EpiSimS New Capabilities 

4.1 Disease Progression Model Enhancements 

Reformulation of the disease progression model implementation 

A new disease model was fully implemented this year. The former load-model design had the 
following drawbacks: 

• thresholds affect both infectiousness and progress of the disease, with complicated 
consequences  

• large variability in state duration arising from small variability in initial load  
• poor decomposition of infection rate by demographics  
• unwarranted precision in model  
• profusion of exponentiation and logarithms, slowing computation  
• approximates nonlinear dynamics with linear dynamics  
• overly deterministic transmission process  

The new disease model meets several requirements:  

• allow multiple manifestations of disease, possibly based on demographics  
• allow contamination of locations 
• allow variable infectiousness and susceptibility 
• represent effects of a variety of treatments  
• relate transmission rate to duration/type of contact and demographics of susceptible and 

infectious  
• allow flexible ordering of symptomatic, infectious, etc.  



 29 

• allow flexible transmission scaling behavior as number of people increases  
• label states with meaningful names (infected, symptomatic, etc.) 
• provide easy tracking of state changes  
• scale to populations of 10 million 
• easy matching between people and the course of their disease  
• match state update process to discrete event system  
• entire model and scenario specifiable by naive user  
• lightweight computation and memory requirements  

Different individuals manifest infection by the same infectious agent in different ways. A primary 
goal of EpiSimS is to capture the dependence of disease manifestation on demographics. To this end, 
each person in the population is assigned:  

• a Disease Manifestation,  
• a Disease State and an associated time stamp, 
• an (integer) Treatment Level, 
• and a Disease Transmission Type.  

The assignment is consistent with user-specified probabilities conditional on demographics. A 
variety of assignments may be produced by varying the random seed. During the course of the 
simulation, each location (at the finest resolution simulated) is also associated with a disease state. 
Some aspects of a location's disease state may be modified by exogenous events created by the user 
(e.g. contamination, decontamination); others reflect transmission dynamics internal to the 
simulation. 
 
 In addition to the conditional probabilities for the assignments described above, the user must also 
specify the following:  

• a set of Disease Manifestations,  
• a set of Transmission Rate functions,  
• a set of (integer) behavioral threshold values.  

Each possible Disease Manifestation must be specified by the user prior to using EpiSimS. A 
Disease Manifestation is a Markov Chain consisting of a finite set of Disease States together with 
transition probabilities among them and a distribution of residence times in each state. Most Disease 
States are associated with values for the following attributes relevant to the spread of disease:  

• prodrome, (integer) (non-specific symptoms, easily mis-diagnosed) 
• symptoms, (integer) (depending on thresholds) 
• infectivity, (floating point) (capable of transmitting disease - may also represent 

contamination)  
• incapacitation, (integer) (cannot perform some activity - distinct from symptoms)  

These attributes take on nonnegative values representing the degree to which the attribute is present. 
The default special value zero is interpreted as a complete absence of the attribute; the special value 
dead can be assigned to the incapacitation attribute. The value of some attributes affects the 
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dynamics of disease transmission directly. For example, infectivity is related to the probability of 
transmission as explained below. Others may affect the behavior of an infected person: symptom 
levels reflect the severity of symptoms, the likelihood of health-care-seeking behavior, and the 
likelihood of correct diagnosis; the degree of incapacitation affects whether a person stays home 
from work, shopping, or other activities. Detailed interpretation of these attributes is provided below. 
In addition to these attributes, the user can assign each state a unique alphanumeric name. 
Simulation outputs and analysis tools will refer to states by this name.  

Each Disease Manifestation's Markov Chain must end with one of two special kinds of Disease 
States. Any Disease State with "incapacitation" set to dead is a possible terminal state. The other 
special state is the uninfected Disease State, with the single attribute "susceptibility" used to specify 
both how likely an uninfected person is to become infected and whether a person who has recovered 
can be re-infected. Assignment of any state besides uninfected implies that the person is infected. 
 
Note that the Disease State does not contain a "recovered" attribute. The simulation maintains 
information about each person's history, including whether an individual has ever been infected and 
whether he or she is currently infected. These can be combined into the notion of "recovered".  
 
As mentioned above, the finest resolution of location also includes a form of Disease State. A 
location's Disease State contains enough information to represent contamination. Thus, at least the 
"infectivity" attribute of a Location's Disease State should be maintained, although other attributes 
are ill-defined. Possibly, the "symptom" attribute could be used to specify whether contamination 
could be detected. Note that, unlike a person's Disease State, a Location will probably cycle through 
many infections in the course of the simulation. Whenever an infectious person is present, the 
Location will become contaminated. This contamination may decay quickly if the residence time in 
the infected state specified by the user is short. 

Every Disease State except the special dead and uninfected states is associated with a probability 
distribution of residence times. The user may choose from a predetermined set of distributions and 
assign any necessary parameters. 

The user may specify an arbitrary number of transitions out of each Disease State into others. 
Associated with each transition is a probability. Optionally, each transition may also be associated 
with a set of Treatment Levels. When a person leaves a Disease State, she or he will pick a new state 
from among those whose transitions are labeled with the person's treatment level.  

There is a single consistency constraint on allowed values of attributes for a Disease State: non-zero 
incapacitation implies non-zero prodrome or symptoms. In particular, the following constraints are 
NOT imposed: 

1. infectious => symptomatic or prodromal  
2. dead => uninfectious (corpses can be hazardous)  

In addition, the transition probabilities for each state must sum to unity by Treatment Level.  

Some actions taken at run time during the simulation depend on thresholds set by the user. For 
example, when a person becomes incapacitated, he or she will skip some normal activities. Which 
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activities are skipped depends on the value of the person's incapacitation versus user-specified 
thresholds. Similarly, symptomatic people may be mis-diagnosed if their level of symptoms is not 
above a user-specified threshold. Also, symptomatic people may seek over-the-counter remedies or 
emergency care as the level of their symptoms rises. The user may specify a threshold value for 
incapacitated for staying home from any of the defined activity types. Furthermore, the user may 
specify any of the following thresholds for the symptomatic and prodrome attributes: 

• seek over-the-counter remedies 
• seek treatment at hospital/clinic 
• be readily diagnosed by trained physician, lab test, etc. 
• be readily diagnosed by casual observer (or contact tracer) 

A dual-level threshold formulation is being implemented: when more than a user-specified number 
of people have been diagnosed with the disease, the second set of thresholds will be used. This 
allows for the increased likelihood of correct diagnosis when the disease is known to be present in 
the community.  
 

Self-isolation Based on Disease Attributes 

The scenario file command, self isolate, has been modified to include a disease state attribute and 
level. Multiple self-isolate commands are allowed in defining a scenario in a scenario file. The new 
format is as follows: 

 
<time> self_isolate <disease_attribute> <disease_attribute_level> 
 
time                    - Time as HH:MM:SS. 
disease_attribute       - One of prodrome, symptoms, or incapacitation. 
disease_attribute_level - Integer value of minimum disease attribute 
                          value to trigger on. 

In the EpiSimS simulation, when people go into self-isolation they go home and stay there until they 
no longer meet the disease attribute criteria specified. They are only following their schedule in the 
sense of components of time, though they continue to progress through the disease till recovery or 
death. 

Choice of disease attribute criteria is dependent on the model of the disease and its states. One or 
more self-isolate scenario commands may be required to force self-isolation once people become 
"prodromal" till they recover or die. 

Example 1: 
00:00:00 self_isolate symptoms 2 

Starting at time 0, people will self-isolate whenever their symptoms attribute >= 2. They will stay 
home until symptoms < 2. 

Example 2: 
09:00:00 self_isolate prodrome 1 
09:00:00 self_isolate symptoms 1 
09:00:00 self_isolate incapacitation 1 
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Starting at 9 AM on the first day, people will self-isolate whenever their prodrome attribute >= 1 or 
symptoms attribute >= 1 or incapacitation attribute > 1. They will continue to stay home until they 
no longer meet the above criteria. 

Example 3: 
10:00:00 self_isolate prodrome 2 

Starting at 10 AM on the first day, people will self-isolate only while their prodrome attribute >= 1. 
Depending on the disease, this could cause people to go about their regular activities as they 
progress further along in the disease (if prodrome becomes 0).  

Multiple Dead States Allowed in Disease Manifestation Model 

Multiple dead states (where incapacitation = 10) are now allowed in a Disease Manifestation. A dead 
person can be infectious for a while (e.g. in a morgue) and then move to a dead state where the body 
is no longer infectious (ex. buried). 

4.2 Implementation of Consequence Mitigation Strategies 

Two kinds of treatment delivery are implemented in EpiSimS: mass delivery and ring delivery. 
These delivery strategies can be used to deliver any of the treatments that are specified in the disease 
model. Mass delivery is used to distribute treatment to the whole population at random, or targeted 
by demographic group. Ring delivery is targeted to those who have come into contact with a 
contagious person. The speed and duration of either delivery system may be limited by specified 
resources, such as number of treatments or number or treaters. Either delivery can be restricted to 
treat those within a specified range of ages. A delivery can be initiated at a prescribed time. Multiple 
deliveries can be carried out for a given treatment. For example, the young and the old can be 
vaccinated in a first round of ring delivery, while the rest can be mass vaccinated at a later time. 
 
Prophylaxis (before infection) is modeled by changing the person's susceptibility. The user must 
specify a distribution of susceptibilities to use. As usual, this distribution may be conditioned on 
people's demographics. The variability in susceptibility post-prophylaxis allows one to model 
variable efficacy.  
 
During the course of the simulation, an individual may seek treatment as described above. 
Availability of treatment is constrained by the simulation based on available resources (in an as-yet-
to-be-determined way) and on level of symptoms (also to be determined). The simulation will 
determine whether each individual seeking treatment receives it, and also what level is given. 
Examples of possible treatment levels are: 

• over-the-counter drugs 
• anti-virals 
• vaccinations 
• antibiotics 
• ventilators 
• hospitalization 
• morgue 
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The effect of treatment (after infection) is specified by the user in the Disease Manifestation Model. 
Each state transition may be labeled with a set of Treatment Levels. If it is not labeled, the transition 
is available to any individual. A labeled transition is only available to individuals who have received 
treatment at one of the levels included in the set. 

EpiSimS has added the capability to simulate social distancing behavior or the wearing of masks that 
effectively reduce the infectiousness of sick persons and/or the susceptibility of susceptible persons. 
These behavior changes are implemented into EpiSimS through a set of new user-specified 
parameters: the fraction of persons by age and activity that express the behavior, and the 
effectiveness of the behavior in those that express it. The effectiveness of masks depends on the type 
of mask. The nominal mask (representing the N-95 respirator mask) is taken to reduce susceptibility 
by a factor of 20. Because of the one-way valve on masks designed to be worn for extended periods, 
this nominal mask does not reduce the infectiousness of a sick person.  

4.3 Improved Disease Transmission Model 

Adjustments to Transmission Rates between demographic groups is enabled by specification in the 
pre-processing program InitializeHealth (refer to Appendix B -InitializeHealth). The demographic 
groups may be the same as those specified for initial health states or they may differ. A transmission 
coefficient is assigned between every demographic group for every activity. This results in a series 
of tables of transmission coefficients that are used by the simulation when it calculates the 
transmission rate function for a particular contact. The default transmission coefficient is 1. 

A transmission rate function returns the (baseline) probability of a person's becoming infected per 
minute of contact as a function of his/her disease transmission type and the type of an infectious 
person at the same location. That is, if exactly one susceptible of transmission type j and one 
infectious person transmission type k have been in a work location for one minute, the base 
probability that the susceptible has become infected is given by ρ work(j,k).The susceptible or 
infectious "person" may in fact be a location. Note that the transmission rate function need not be 
symmetric between susceptible and infective, and that it may be activity specific.  
The reason the probability returned by the transmission rate function is called a "baseline" is that it is 
further adjusted by duration of contact, number of people in the location, infectivity, and 
susceptibility.  
 
If more or less time than one minute has passed, the probability is adjusted as for a Poisson process, 
using the survival rate and assuming the probability of infection in each time interval is independent. 
Thus if the base probability for infection per minute is p, the probability in t time units is 1 - (1-p)t. 

If more than one infective is present, the probability is scaled under the assumption that each 
infective spreads disease independently. Thus if there are Ni infectives of transmission type i, with 
probability of transmission pi, the overall probability of transmission in time t will be 1 - exp{t Σi Ni 
ln(1-pi)}. If M susceptibles are present, we divide the probability of transmission by the scale factor 
Mα, where α is a user-specified scale factor. Each susceptible present undergoes a Bernoulli trial 
with the probability relevant to that person. (We'll see - if this is too computationally expensive, we 
could just assign the expected number of people to get infected by type.) 

If the infective has infectivity r, and the susceptible has susceptibility s, the base transmission 
probability is adjusted to be srρwork(j,k). The user should ensure that all possible resulting 
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probabilities are less than unity. Taking into account the different levels of infectivity associated 
with each Disease State, if there are nk,l infectious people of type k with infectivity r, then the 
probability of infecting a single susceptible of type j in time t would be 
 
p(t) = 1 - exp [t Σtypes k Σinfectivity r nk,r ln(1 - rpk,j)]. 

 
Putting everything together, the probability of infecting a person of transmission type j with 
susceptibility s in a location with activity type a with M susceptibles and nk,l infectious people of 
type k with infectivity r during a time t, subject to user-specified scaling in susceptibles α, is: 
 
pj,s(t) = {1 - exp [t Σtypes k Σinfectivity r nk,r ln(1 - rs ρ a(j,k)]}/ Mα 
 

A Transmission Coefficients Table can be created using the Initialize Health GUI. This is a set of 
coefficients (<= 1) that can be specified for all combinations of selected demographics in each 
different building type environment (ex. home, work, shop, social recreation, serve passenger, 
school, and college). This can be used to increase/decrease the probability of infection based on the 
type of room people are in when they are exposed. A default Transmission Table of all 1’s is used if 
one is not provided. 

4.4 Sub-Location Modeling 

Transims divides a city up into locations. At any moment, every person in the city is either traveling 
or is at a location. When a person is at a location, he is performing a specific activity, such as 
working or shopping. 

The sublocation model in EpiSimS is used to place a person into a specific room in a specific 
building at the given location. Buildings have a building type, which is loosely coupled to a person's 
activity type. For example, if a child's activity is school, he will always be found in a school 
building. But if a person's activity is worker, they might be in a work building as a worker or in a 
school building as a teacher. 

Sublocation modeling provides EpiSimS with two benefits. The first is to limit disease transmission 
at a location to smaller subsets of the population. The second is to allow people to go to different 
rooms every day, even though EpiSimS’ population follows the same Groundhog Day schedule 
every day. 

The sublocation model is also involved in finding occupants when a treater, such as a vaccinator, 
comes around looking for somebody to vaccinate. For example, if the vaccinator comes to a home, 
the vaccinator is told to vaccinate everybody in the home. If the vaccinator comes to a shopping 
center, nobody is found to treat. If the vaccinator comes to a school, everybody at the school is 
vaccinated. 

4.5 New Output Events 

There are now only three kinds of output events that are written to the events files during the 
EpiSimS simulation. One for the first time a person is exposed, another when a person is treated with 
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any treatment, and whenever a person changes disease state. The formats are as follows. The data on 
each line is tab-delimited. 

Exposure event: 
E <time> <person-id> 

Treatment event: 
T <time> <person-id> <household-id> <location-id> <treatment-id> 

Change Disease event: 
D <time> <person-id> <old-disease-state-id> <new-disease-state-id> 
 

The treatment ids can be found in the treatment file. The disease state ids can be found in the disease 
state file. The disease state file looks like the following. The same id’s are generated in EpiSimS. 
The disease attributes are included for use in postprocessing. 
 
# This is the Disease Manifestation-State ID file. 
# Each line contains the following separated by tabs. 
# <ID> <manifName> <stateName> <prodrome> <symptoms> <infectivity> 
<susceptibility> <incapacitated> 
1       "hemorrhagic"   "dead"  0       0       0.1     0.0     10 
2       "hemorrhagic"   "incubating1"   0       0       0.0     0.0     0 
3       "hemorrhagic"   "infectious"    2       2       1.0     0.0     1 
4       "hemorrhagic"   "sick"  2       2       1.0     0.0     4 
5       "hemorrhagic"   "uninfected"    0       0       0.0     1.0     0 
6       "immune"        "uninfected"    0       0       0.0     0.0     0 
7       "normal, over 30"       "dead"  0       0       0.1     0.0     10 
8       "normal, over 30"       "incubating1"   0       0       0.0     0.0 0 
9       "normal, over 30"       "incubating2"   0       0       0.0     0.0 0 
10      "normal, over 30"       "infectious"    2       0       0.1     0.0 

4.6 Enhanced Pre- and Post-Processing 

EpiSimS requires a 24 hour schedule per person in the simulation. This is built from the UPMoST 
activity information. The schedule generation has been enhanced to make sure everyone starts at 
home at 00:00:00 and ends at home at midnight. When a person’s activity information does not start 
at 00:00:00, schedule items to start from home are added. When a person’s activity information does 
not end at home at midnight, schedule items are added to bring them home. 

The partition generation has been enhanced to scale for larger population sizes. Counts are collected 
for the total number of people participating in an activity for a set of aggregated locations (known as 
a link). Aggregation of the locations allows for more efficient sub-location modeling in the 
simulation. 

The sample generation now collects the home location or link from the EpiSimS Demographics, due 
to a new organization of the UPMoST information. 

The InitializeHealth program assigns initial health states to every person in the population. The 
interface allows specification of probability distributions conditioned on demographics. Time 
already elapsed in the initial disease state can also be specified to allow a distribution of entry times. 
This is most useful for disease models such as Smallpox where the residency time in various states is 
lengthy. 
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InitializeHealth is normally used to create a random set of infected people in each manifestation of 
the disease model. Conceivably, it can also be used to study specific time slices of a pandemic by 
placing the population in varying advanced stages of the disease according to previous simulation 
runs or research data. 

The program interfaces with a database containing the UPMoST people and household entity 
demographics. Normal conditional query statements subdivide the population according to the 
disease model delineation or the particular case study. For example, the LA study and the Influenza 
disease model divided the population by age, whereas a former Smallpox study had a hemorrhagic 
subset and a female-pregnant subset. 

Currently, the program considers person ID, age, gender, worker-status, household income and home 
location. The program is modular by design and works with any population or sample population 
along with any EpiSimS Disease Model. The graphic user interface enables it to be used by non-
programmers. The specification of transmission coefficients is now a part of this tool. 
InitializeHealth is part of the suite of pre-processing tools that will be combined into the full Set-up 
Wizard. 

After running a simulation, post-processing of the output events requires the merging of all the 
sorted output event files, processing using a number of scripts, and creation of plots. An extract 
script is used to create a text log and a tab-delimited count files binned by a user-supplied day 
fraction (ex. 1 day, 0.5 day, or 0.25 day). One of the counts files is similar to that used by the 
previous version for use with Gnuplot. The other contains counts for exposures, treatments, disease 
attributes, and each of the individual disease states that can be used by an external plotting or 
analysis package (e.g. Excel or Gnuplot).  

Specifically counts are collected for # exposed, # ever exposed, # treated, # ever treated, # treated 
with X, # ever treated with X, # became, # current, and # ever for each of the disease attributes 
(prodromal, symptomatic, infectious, susceptible, incapacitated (includes dead), incapacitated (not 
dead), and dead), # became infected, # current infected, and # ever infected, # became recovered, # 
current recovered, # ever recovered, # disease state changes, total of disease state changes, and # 
became, # current, and # ever for each disease manifestation state. 

Due to the large number of columns in the counts file, a user may want to select only a subset 
depending on what they are interested in. A few scripts have been provided to help select columns 
and create a user-defined subset of the counts file. 
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Fig. 4.6-1. Plot of output events for disease attributes using Gnuplot. 

 

 
Fig. 4.6-2. Plot of output events for states of a disease manifestation in Excel. 
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4.7 Computational Improvements 

Earliest Neighbor Parallel Synchronization Strategy 

EpiSimS uses neighbor synchronization to keep the simulation in sync among the computer's 
processors. EpiSimS has one master process and many slave processes. Each slave has a subset of 
the city's locations, which it keeps for the entire simulation. As people go from place to place they 
are passed from one processor to another. In EpiSimS, the simulation clock time on a given 
processor is the time that the most recent event was popped of its event queue. Because of varying 
loads, some processors can get ahead of others. This mismatch then allows for the possibility that 
new events (e.g. arrival of individuals) are placed on an event queue with a timestamp that is earlier 
than the current processor simulation time. Previously, such an occurrence produced a mishandled 
event. A new synchronization strategy has been implemented that prevents this from occurring. 

Since a person's travel time between locations is on the order of fifteen minutes, we have some 
latitude as to how close the time on one processor has to be to the time on another. We specify a time 
called the slack time, which is the amount of simulation time that a processor can simulate before 
they initiate synchronization with another neighbor.  

When it is time for a processor to initiate synchronization, it picks another processor with which to 
synchronize. They compare clocks, and if one or the other is more than slack time units ahead, that 
one waits till the other is within slack time units of catching up. We have two methods of choosing 
which neighbor to choose as a synchronizing partner. One chooses the neighbor completely at 
random, and the other checks with the master, which selects the processor with the earliest time as 
the synchronizing partner. 

MPI Toolbox 

Due to its incompatibility with the framework software and deep hierarchical design, the MPI 
toolbox was rewritten to be more maintainable and understandable. The MPI toolbox is used to send 
and receive asynchronous messages between processors during a simulation. The toolbox provides 
methods for message creation, sending, receiving, and deletion. Handlers for processing the contents 
of a message are written in the objects using the messaging service. 

Porting EpiSimS to a 64-bit Architecture 

The EpiSimS code was ported to a BPROC cluster of 2048 x Intel Xeon, 2.4 GHz, 2 GB per node, 
Myrinet interconnect at LANL, known as Pink. LSF is used for interactive sessions (llogin) and 
batch jobs (bsub). Porting of the code required GCC 3.4. The external packages built were the Boost 
library, a new Berkeley DB library, the log4cpp library, the Metis (graph partitioning) library, and 
Sprng (random number generator) library. The UIS framework, UPMoST, and EpiSimS built, 
requiring minor changes to their build environments. UPMoST did require a minor code change due 
to the new Berkeley DB library. A new version of the Berkeley DB was required due to problems 
with the indexes created from an earlier version. 

Pink nodes have less memory than our local cluster, requiring more processors for an EpiSimS 
simulation run. Runs are limited to 12 hours. Base case runs of the Los Angeles data of ~16M people 
(demographics, health, schedule, and partition files) have been run on 300 or more processors, 
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resulting in 160 or more simulated days. Prior to the speed-up in loading the population data, only 
~111 simulated days were possible.  

The schedule files must currently be read on the slave CPU’s for this architecture. This constraint 
also caused a scaling problem with the mass delivery code, requiring some temporary recoding. This 
issue requires further investigation. 

Memory/Scaling Improvement 
A new algorithm for assigning locations to processors has reduced the computational time required 
to load the Los Angeles population of over 16 million persons from 4 hours to 45 minutes. This is a 
major improvement in efficiency that has significantly increased the number of runs that can be 
conducted. 
 
The locations for the Los Angeles population activities were modeled as links. Each link represents a 
set of aggregated locations. This has resulted in less objects created in memory and more efficient 
use of the sublocation model. 

More Sophisticated GUIs 

EpiSimS has added Graphical User Interfaces to do some of the simulation pre-processing. The 
disease model is constructed graphically using the BuildDiseaseManifestations tool. The initial 
health states are specified with the InitializeHealth tool, and the scenarios are defined using 
ScenarioBuilder. We are in the process of combining these tools into an EpiSimS Set-up Suite which 
will guide the user through the entire set-up process, validate the input files, and document the 
simulation run. 

5 Verification 

To verify that the simulation was working as it should, several input parameters were varied and the 
resulting simulated epidemics were analyzed. It was found to be useful to try a spectrum of 
variations on a smaller sample population. An EpiSimS utility creates a reduced-size population 
where people are more highly connected than in a random sample. The resulting population gives a 
good testbed to study the interdependence of EpiSim's input variables. Three variables were varied: 
the infectivity, the proportion of those who self isolate, and the number of people in the average 
room. The twelve combinations of these variations were run with the reduced-size population, and 
the resulting epidemic curves were examined, and found to behave as expected. The output graphs 
from some of these runs follows. The points on the x-axis are a half day apart, so the y-axis is the 
number of people who were infected in that half day period. 
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Decreasing the infectivity, increasing the number of people in a room, and decreasing the number of 
self isolating people all have the effect of increasing the total number of infected over the course of 
the epidemic, to one degree or another. They also have the effect of making the epidemic peak and 
die more quickly. Table 5-1 summarizes the verification runs performed on the sampled 500,000 
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population. The first three columns are the input parameters which we varied. The time scale 
represents the estimated duration of the epidemic, and the total infected is the number that were 
infected during the course of the run. 

  

Infectivity 
Self-

isolate Roomsize Time scale Total infected 
0.0095 0.5 0.5 3.5 246 
0.0095 0.5 1 90.5 52870 
0.0095 0.5 4 36.5 118112 
0.0095 1 0.5 0 182 
0.0095 1 1 19.5 510 
0.0095 1 4 50.5 95595 
0.0150 0.5 0.5 103 55536 
0.0150 0.5 1 59 114272 
0.0150 0.5 4 31 172033 
0.0150 1 0.5 4 254 
0.0150 1 1 88.5 70693 
0.0150 1 4 36 142781 

Table 5-1. Verification test results on reduced-size population. The nominal 
infectiousness in transmissions per hour per infectious person is obtained by 
multiplying the infectivity multiplier value shown by 60*0.005. 

6 Results: Epidemic Simulation Without Disease Interventions 

6.1 Epidemiologic Results 

The Epidemic Curve 

The base case scenario for an avian influenza epidemic in Los Angeles has 16,106,535 residents, 
each represented as an individual in the EpiSimS simulation. Each person has a schedule of activities 
that they undertake throughout the day. There are eight types of activity: home, work, shopping, 
visiting, social recreation, service passengers (e.g. drive a carpool), school, and college; plus a ninth 
activity designated other. Each activity occurs in a room, and there may be other people in the room 
at the same time. The virus can be transmitted between persons that occupy the same room at the 
same time. There are 562,452 Los Angeles locations represented in the EpiSimS simulation. At each 
location, there is one building for each of the eight designated activity categories. Each building 
contains rooms: the number of rooms for each activity type at each location is derived from the Los 
Angeles data. For some activity categories, e.g. home or work, a person does that activity in the 
same room each day, with the same other people. For other activity categories, such as shopping, the 
person is assigned to a randomly selected room in the building corresponding to that activity 
category, at the location designated in her schedule. The activity schedules and the locations are 
statistically the same as those of actual people, and are constructed from a variety of real data 
sources. In addition, an urban mobility simulation computes the travel time between activities, 
accounting for distance, roads and traffic. 
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The base case treats the scenario that an avian strain makes so rapid a jump to humans that no 
vaccine can be developed in time, and that nobody has developed immunity to the disease. Further, 
in the base case, it is taken that there are no effective antiviral treatments or vaccines are available. 

Some persons who get infected will discontinue their activity schedule: when they get sick, they go 
home and remain there through the course of their symptoms. 33% of adults and seniors will self-
isolate in this fashion. 50% of students will self-isolate, as will 53.3% of pre-school children. 
Persons are assigned to self-isolate at random, based on their age and the age-dependent probability 
of self-isolating. Those persons that self-isolate can infect members of their household, but will no 
longer spread the virus outside their household. 

The target attack rate for the base case was taken to be 25%, for consistency with the WHO baseline 
avian flu pandemic scenario. The infectiousness was scaled to obtain a pandemic that infected about 
4 million of the individuals in the simulation. The calibration and infectiousness scaling is described 
in section 3.3. 

The base case run starts with the infection (at time = 0.0 days) of 202 randomly selected individuals. 
This represents a compromise between having enough infected individuals at the start to average the 
fluctuations in transmission histories, and being able to compute the trajectory beginning early in the 
outbreak. 

The base case EpiSimS simulation was run from July 16, 2005 to July 23, 2005, distributed over 106 
processors, each with 2 GB of local memory. This run of the EpiSimS simulation is designated 
try30. The number of new infections per day is shown in Fig. 6.1-1, and as a logarithm in Fig. 6.1-2. 

 

 
Fig. 6.1-1. The base case EpiSimS simulation run, try30, showing the number of new 
infections per day, for pandemic influenza in a population of 16.1 million individuals. 
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Fig. 6.1-2. The base case EpiSimS simulation run of pandemic influenza in a Los Angeles 
population of 16.1 million individuals, try30, showing the number of new cases per day and 
the current number of symptomatic persons. 

The cumulative number of cases is shown in Fig. 6.1-3. 
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Fig. 6.1-3. The base case EpiSimS simulation run, try30, showing the cumulative number 
of cases, as a percentage of the initial population. 

The peak new case rate of 65,278 new cases per day occurs from 124.0 to 125.0 days after the start 
of the epidemic. By day 125, when the peak new case rate occurs, the cumulative number of 
infections reaches 1,938,657. The simulation was run out to day 307, by which time 3,813,957 
people had been infected and no new infections occur. 

Although the “duration” of the epidemic is a somewhat nebulous notion, it can be quantified as 
follows. The new infection rate exceeds half its peak value for a total of 52 days, from 26 days 
before the peak until 25 days after the peak. Alternatively, the middle 80% of all cases occur during 
a period of 64 days, again roughly centered around the 50% point. 

The epidemic curves normalized to the population to give results that are essentially independent of 
the population. As a percentage of the initial population, the base case reaches a peak new infection 
rate of 0.405% of the initial population becoming infected per day. The percentage of the population 
that is currently symptomatic is shown in Fig. 6.1-4. This number translates to hospital/clinic visits, 
hospitalization rates, and fatalities. 
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Fig. 6.1-4. The fraction of the population that is symptomatic, in the base case pandemic influenza 
simulation of Los Angeles. 

What are people doing when they become infected? 

The simulation keeps a record of the activity that each person was doing when he became infected. 
Fig. 6.1-5 shows the breakout of new cases per day into the activity categories. The breakout of 
cumulative infections by activity category for the whole epidemic is shown in Table 6.1-1. More 
infections are acquired at home than either school or work, and more infections are acquired at work 
than at school. However, the infections acquired at school per student exceeds the infections 
acquired at work per worker, leading to a higher attack rate among students than among workers. 
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Fig. 6.1-5. Breakout of new cases per day into categories of where the person was when 
she was infected. In descending order, the curves are Home, Work, School, Shop, Social 
Recreation Building, College. 

 
Where infection is acquired Fraction of cumulative infections 

Home 43.9% 
Work 29.2% 

School (K-12) 18.9% 
Shop 5.6% 

Social recreation 1.3% 
College 1.0% 

Table 6.1-1. Breakout of infections by activity category 
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Fig. 6.1-6 shows the same data as that in Fig. 6.1-5, except that the number of new cases per day 
acquired in each activity category is normalized to the total daily number of new cases. This 
highlights the timing: the pandemic runs through schools earlier than through the rest of the 
population. Only the home, work, and school categories are shown. 

 

 
Fig. 6.1-6. Fraction of daily new cases that are acquired (curves in descending order) at 
Home, Work, and School, illustrating the early wave of school-acquired infections. 

 

Age dependence of infections 

The EpiSimS simulation generates records of how the epidemic depends on people’s age. Fig. 6.1-7 
shows the distribution of ages in the initial population of Los Angeles. Fig. 6.1-8 shows the current 
fraction of people of each age that are sick at three times: on day 97, five days after the peak on day 
130, and well after the peak on day 160. The relative rise in the fraction of school-age persons shows 
the early onset of a wave of school-acquired infections. 
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Fig. 6.1-7. The distribution of ages in the Los Angeles population 
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Fig. 6.1-8. The fraction of persons of various ages that are infected before the peak of the 
outbreak on day 97, five days after the peak on day 130, and well after the peak on day 
160. 

Other measures of epidemic trajectory 

In addition to new cases per day, EpiSimS can generate the number of people in the incubating 
stage, the number of people in the symptomatic stage, the number of remaining susceptible people, 
etc. A list of 226 fields of data extracted from the base case runs is shown in Table 6.1-2.  

 
exposed 
ever_exposed 
treated 
ever_treated 
treated_"antivirals" 
ever_treated_"antivirals" 
treated_"vaccine" 
ever_treated_"vaccine" 
treated_"antivirals,vaccine" 
ever_treated_"antivirals,vaccine" 
became_prodromal 

became_"preschool" "treated_sub-clinical_infectious1" 
current_"preschool" "treated_sub-clinical_infectious1" 
ever_"preschool" "treated_sub-clinical_infectious1" 
became_"preschool" "treated_sub-clinical_infectious2" 
current_"preschool" "treated_sub-clinical_infectious2" 
ever_"preschool" "treated_sub-clinical_infectious2" 
became_"preschool" "treated_symptomatic_circulating1" 
current_"preschool" "treated_symptomatic_circulating1" 
ever_"preschool" "treated_symptomatic_circulating1" 
became_"preschool" "treated_symptomatic_circulating2" 
current_"preschool" "treated_symptomatic_circulating2" 
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current_prodromal 
ever_prodromal 
became_symptomatic 
current_symptomatic 
ever_symptomatic 
became_infectious 
current_infectious 
ever_infectious 
became_susceptible 
current_susceptible 
ever_susceptible 
became_incapacitated (includes dead) 
current_incapacitated (includes dead) 
ever_incapacitated (includes dead) 
became_incapacitated (not dead) 
current_incapacitated (not dead) 
ever_incapacitated (not dead) 
became_dead 
current_dead 
ever_dead 
became_infected 
current_infected 
ever_infected 
became_recovered 
current_recovered 
ever_recovered 
never_infected 
state_changes 
cum_state_changes 
became_"adult" "dead" 
current_"adult" "dead" 
ever_"adult" "dead" 
became_"adult" "latent_incubating" 
current_"adult" "latent_incubating" 
ever_"adult" "latent_incubating" 
became_"adult" "sub-clinical_infectious" 
current_"adult" "sub-clinical_infectious" 
ever_"adult" "sub-clinical_infectious" 
became_"adult" "symptomatic_circulating" 
current_"adult" "symptomatic_circulating" 
ever_"adult" "symptomatic_circulating" 
became_"adult" "symptomatic_non-circulating" 
current_"adult" "symptomatic_non-circulating" 
ever_"adult" "symptomatic_non-circulating" 
became_"adult" "treatable_sub-clinical_infectious" 
current_"adult" "treatable_sub-clinical_infectious" 
ever_"adult" "treatable_sub-clinical_infectious" 
became_"adult" "treatable_symptomatic_circulating" 
current_"adult" "treatable_symptomatic_circulating" 
ever_"adult" "treatable_symptomatic_circulating" 
became_"adult" "treatable_symptomatic_non-circulating" 
current_"adult" "treatable_symptomatic_non-circulating" 
ever_"adult" "treatable_symptomatic_non-circulating" 
became_"adult" "treated_sub-clinical_infectious1" 
current_"adult" "treated_sub-clinical_infectious1" 
ever_"adult" "treated_sub-clinical_infectious1" 
became_"adult" "treated_sub-clinical_infectious2" 
current_"adult" "treated_sub-clinical_infectious2" 
ever_"adult" "treated_sub-clinical_infectious2" 
became_"adult" "treated_symptomatic_circulating1" 
current_"adult" "treated_symptomatic_circulating1" 
ever_"adult" "treated_symptomatic_circulating1" 

ever_"preschool" "treated_symptomatic_circulating2" 
became_"preschool" "treated_symptomatic_non-
circulating1" 
current_"preschool" "treated_symptomatic_non-
circulating1" 
ever_"preschool" "treated_symptomatic_non-
circulating1" 
became_"preschool" "treated_symptomatic_non-
circulating2" 
current_"preschool" "treated_symptomatic_non-
circulating2" 
ever_"preschool" "treated_symptomatic_non-
circulating2" 
became_"preschool" "uninfected" 
current_"preschool" "uninfected" 
ever_"preschool" "uninfected" 
became_"room" "uninfected" 
current_"room" "uninfected" 
ever_"room" "uninfected" 
became_"senior" "dead" 
current_"senior" "dead" 
ever_"senior" "dead" 
became_"senior" "latent_incubating" 
current_"senior" "latent_incubating" 
ever_"senior" "latent_incubating" 
became_"senior" "sub-clinical_infectious" 
current_"senior" "sub-clinical_infectious" 
ever_"senior" "sub-clinical_infectious" 
became_"senior" "symptomatic_circulating" 
current_"senior" "symptomatic_circulating" 
ever_"senior" "symptomatic_circulating" 
became_"senior" "symptomatic_non-circulating" 
current_"senior" "symptomatic_non-circulating" 
ever_"senior" "symptomatic_non-circulating" 
became_"senior" "treatable_sub-clinical_infectious" 
current_"senior" "treatable_sub-clinical_infectious" 
ever_"senior" "treatable_sub-clinical_infectious" 
became_"senior" "treatable_symptomatic_circulating" 
current_"senior" "treatable_symptomatic_circulating" 
ever_"senior" "treatable_symptomatic_circulating" 
became_"senior" "treatable_symptomatic_non-
circulating" 
current_"senior" "treatable_symptomatic_non-circulating" 
ever_"senior" "treatable_symptomatic_non-circulating" 
became_"senior" "treated_sub-clinical_infectious1" 
current_"senior" "treated_sub-clinical_infectious1" 
ever_"senior" "treated_sub-clinical_infectious1" 
became_"senior" "treated_sub-clinical_infectious2" 
current_"senior" "treated_sub-clinical_infectious2" 
ever_"senior" "treated_sub-clinical_infectious2" 
became_"senior" "treated_symptomatic_circulating1" 
current_"senior" "treated_symptomatic_circulating1" 
ever_"senior" "treated_symptomatic_circulating1" 
became_"senior" "treated_symptomatic_circulating2" 
current_"senior" "treated_symptomatic_circulating2" 
ever_"senior" "treated_symptomatic_circulating2" 
became_"senior" "treated_symptomatic_non-circulating1" 
current_"senior" "treated_symptomatic_non-circulating1" 
ever_"senior" "treated_symptomatic_non-circulating1" 
became_"senior" "treated_symptomatic_non-circulating2" 
current_"senior" "treated_symptomatic_non-circulating2" 
ever_"senior" "treated_symptomatic_non-circulating2" 
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became_"adult" "treated_symptomatic_circulating2" 
current_"adult" "treated_symptomatic_circulating2" 
ever_"adult" "treated_symptomatic_circulating2" 
became_"adult" "treated_symptomatic_non-circulating1" 
current_"adult" "treated_symptomatic_non-circulating1" 
ever_"adult" "treated_symptomatic_non-circulating1" 
became_"adult" "treated_symptomatic_non-circulating2" 
current_"adult" "treated_symptomatic_non-circulating2" 
ever_"adult" "treated_symptomatic_non-circulating2" 
became_"adult" "uninfected" 
current_"adult" "uninfected" 
ever_"adult" "uninfected" 
became_"immune" "uninfected" 
current_"immune" "uninfected" 
ever_"immune" "uninfected" 
became_"preschool" "dead" 
current_"preschool" "dead" 
ever_"preschool" "dead" 
became_"preschool" "latent_incubating" 
current_"preschool" "latent_incubating" 
ever_"preschool" "latent_incubating" 
became_"preschool" "sub-clinical_infectious" 
current_"preschool" "sub-clinical_infectious" 
ever_"preschool" "sub-clinical_infectious" 
became_"preschool" "symptomatic_circulating" 
current_"preschool" "symptomatic_circulating" 
ever_"preschool" "symptomatic_circulating" 
became_"preschool" "symptomatic_non-circulating" 
current_"preschool" "symptomatic_non-circulating" 
ever_"preschool" "symptomatic_non-circulating" 
became_"preschool" "treatable_sub-clinical_infectious" 
current_"preschool" "treatable_sub-clinical_infectious" 
ever_"preschool" "treatable_sub-clinical_infectious" 
became_"preschool" "treatable_symptomatic_circulating" 
current_"preschool" "treatable_symptomatic_circulating" 
ever_"preschool" "treatable_symptomatic_circulating" 
became_"preschool" "treatable_symptomatic_non-
circulating" 
current_"preschool" "treatable_symptomatic_non-
circulating" 
ever_"preschool" "treatable_symptomatic_non-
circulating" 

became_"senior" "uninfected" 
current_"senior" "uninfected" 
ever_"senior" "uninfected" 
became_"youth" "dead" 
current_"youth" "dead" 
ever_"youth" "dead" 
became_"youth" "latent_incubating" 
current_"youth" "latent_incubating" 
ever_"youth" "latent_incubating" 
became_"youth" "sub-clinical_infectious" 
current_"youth" "sub-clinical_infectious" 
ever_"youth" "sub-clinical_infectious" 
became_"youth" "symptomatic_circulating" 
current_"youth" "symptomatic_circulating" 
ever_"youth" "symptomatic_circulating" 
became_"youth" "symptomatic_non-circulating" 
current_"youth" "symptomatic_non-circulating" 
ever_"youth" "symptomatic_non-circulating" 
became_"youth" "treatable_sub-clinical_infectious" 
current_"youth" "treatable_sub-clinical_infectious" 
ever_"youth" "treatable_sub-clinical_infectious" 
became_"youth" "treatable_symptomatic_circulating" 
current_"youth" "treatable_symptomatic_circulating" 
ever_"youth" "treatable_symptomatic_circulating" 
became_"youth" "treatable_symptomatic_non-
circulating" 
current_"youth" "treatable_symptomatic_non-circulating" 
ever_"youth" "treatable_symptomatic_non-circulating" 
became_"youth" "treated_sub-clinical_infectious1" 
current_"youth" "treated_sub-clinical_infectious1" 
ever_"youth" "treated_sub-clinical_infectious1" 
became_"youth" "treated_sub-clinical_infectious2" 
current_"youth" "treated_sub-clinical_infectious2" 
ever_"youth" "treated_sub-clinical_infectious2" 
became_"youth" "treated_symptomatic_circulating1" 
current_"youth" "treated_symptomatic_circulating1" 
ever_"youth" "treated_symptomatic_circulating1" 
became_"youth" "treated_symptomatic_circulating2" 
current_"youth" "treated_symptomatic_circulating2" 
ever_"youth" "treated_symptomatic_circulating2" 
became_"youth" "treated_symptomatic_non-circulating1" 
current_"youth" "treated_symptomatic_non-circulating1" 
ever_"youth" "treated_symptomatic_non-circulating1" 
became_"youth" "treated_symptomatic_non-circulating2" 
current_"youth" "treated_symptomatic_non-circulating2" 
ever_"youth" "treated_symptomatic_non-circulating2" 
became_"youth" "uninfected" 
current_"youth" "uninfected" 
ever_"youth" "uninfected" 

Table 6.1-2. The data fields used to extract information of interest from EpiSimS 
simulation runs 

 

Fig. 6.1-9 shows an example of the trajectories of current counts of people in various stages of 
illness for the base case EpiSimS run. The current numbers of people in the incubation stage and the 
infectious stage are shown. The maximum number of infectious people occurs 2 days after the 
maximum number of incubating people. Some of the infectious people are symptomatic, and some 
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of the symptomatic people are incapacitated. These are both shown of Fig. 6.1-9, as is the number of 
people that are currently dead from the disease. 

 

 
Fig. 6.1-9. Current numbers of people in various disease stages, for base case run3080. 
The number of people in the infectious stage is further broken out into those that are 
symptomatic, and those that are incapacitated 

6.2 Observation of Power-Law Mixing 

Fig. 6.2-1 shows the number of new cases per day per infectious person, as a function of the fraction 
of the initial population that is still susceptible, as generated by the try30 base case EpiSimS 
simulation run.  
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Fig. 6.2-1. The number of new cases per day per infectious person, as a function of the 
fraction of the initial population that is still susceptible, from EpiSimS base case run try30. 

Traditional epidemiology modeling takes the number of new cases per day, q to be the number of 
infectious people, I, times the basic number of transmissions per day per infectious person, times a 
correction to account for reduction in the susceptible fraction:  

q = I(R
0
/ ! I )(S / P0 )  

R0 is the basic reproductive number, giving the average number of infections that each sick person 
would transmit if the entire population was susceptible, and τI is the average duration of the 
infectious stage. The ratio (R0/ τI) is thus the average number of transmissions per day per infectious 
person for a completely susceptible population. Alternatively, the basic number of transmissions per 
day per infectious person can be formulated as a weighted sum of terms formed as products of the 
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number of contacts per person, the hours per contact, and the transmission probability per contact 
hour. The final factor implements the common-sense notion that the transmission rate ought to be 
proportional to the fraction of one’s contacts that are susceptible, which ought to be the fraction of 
the whole population that is susceptible. 

The base case EpiSimS run, however shows that for the social contact structure connecting the 
people of Los Angeles, the number of transmissions per infectious person falls off with dropping 
susceptible fraction at much higher than a linear scaling. As can be seen in Fig. 6.2-1, the number of 
new cases per day per infectious person is approximated by 0.328 times the susceptible fraction of 
the original population raised to the 2.06 power. The number of new cases per day is expressed as 

qLA = I(R0 / ! I )(S0 / P0 )(S / S0 )
2.06  

The reason for this power-law scaling is that the early infections occur disproportionally higher in 
persons with larger number of contacts. Then, as the epidemic progresses, the remaining susceptible 
people have on average fewer and fewer contacts, as do the infectious persons. The exponent of 2.06 
is within the range of the power-law exponent describing the network connectivity of several large 
social networks [Albert 2003, Barabasi 2004]. 

Taking the average duration of the infectious stage to be 4.1 days, the coefficient extracted from the 
try30 EpiSimS run, i.e. 0.328, indicates a basic R0 value of 1.34 transmissions per case for the 
simulated epidemic. 

The Los Angeles power-law new-case-rate scaling has been implemented into the scoping model. 
Fig. 6.2-2 shows a comparison between the half-day-bucket-transition model and the EpiSimS 
simulation of the base case, try30. 

 
Fig. 6.2-2. Comparison of new cases per day, for an EpiSimS simulation of the base case, 
and the half-day-bucket-transition model. 
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Relative to the EpiSimS base case simulation try30, the scoping model used 1) the same initial 
population of 16,106,535 people, 2) the same 202 initial index cases infected at the start of the 
epidemic, 3) an initial infection rate of 1.34 transmissions per index case, equivalent to 0.327 
transmissions per day per infectious person, 4) the scaling of the transmissions per infectious person 
as the susceptible fraction raised to the 2.1 power, and of course 5) the same incubation and 
infectious stage duration histograms. The scoping model can reproduce the epidemic curve 
generated by the EpiSimS simulation given the scaling exponent and coefficient of the transmissions 
per infectious person expression. However, the EpiSimS simulation is the only method available to 
determine the scaling exponent and coefficient for the data-based social contact network of a real 
city. 

An epidemiology model (using the reduction in transmissions per case as proportional to the 
susceptible fraction) will not be able to reproduce the epidemic curve. Even by imposing an 
unjustifiable reduced “effective population” and adjusting the reproductive number, the best 
obtainable epidemic curves do not match the EpiSimS results nearly as well as the power-law 
scaling. 

6.3 Geospatial Epidemic Dynamics 

The EpiSimS epidemic simulation has a unique capability for geospatial visualization of epidemic 
dynamics. The progression of the base case epidemic is illustrated in Figs. 6.3-1 through 6.3-3, 
showing the state of infection 64 days before the peak, at the peak, and 64 days after the peak. 

 
Fig. 6.3-1. The geospatial distribution of infected locations, on day 64 of the epidemic, for 
the base scenario, from EpiSimS simulation try30, at 10 a.m. 
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Fig. 6.3-2. The density of infected locations on day 128 of the base case epidemic, when the 
epidemic is at its peak, for 10 a.m. 

 

 
Fig. 6.3-3. The density of infected locations on day 192 of the base case epidemic, which is 
64 days after the peak. 

A similar view showing the terrain and cities is displayed in Fig. 6.3-4. 
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Fig. 6.3-4. Google Earth view of the five-county region, covering the same territory as Figs. 6.3-1 to 
6.3-3. County boundaries are shown in white. 

The epidemic simulated in EpiSimS can be aggregated at various geographical levels. The fraction 
of the population that is infected is shown in Fig. 6.3-5 for each of the five counties. The stochastic 
nature of disease transmission is evident early in the epidemic, but after one in every thousand 
persons are currently infected, there is enough interaction between counties that the five epidemics 
fall into lockstep. In the five counties, the peak incidence rates occur within two days of each other.  
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Fig. 6.3-5. The fraction of the population that is currently infected (including incubating, subclinical, 
and symptomatic states) as a function of time for each of the five counties. 

The five counties show similar, but not identical, peak incidence rates. The perimeter counties 
(Riverside at 2.27%, San Bernardino at 2.36%, and Ventura at 2.34%) attain slightly lower attack 
rates than the central counties (Los Angeles at 2.43% and Orange at 2.47%), where these peak 
incidence rates specify the percentage of the population that is infected at the epidemic peak. 
 
The overall attack rate (the fraction of the county population that ever gets infected) can also be 
aggregated by county. These results are shown in Table 6.3-1. 
 
County Population Peak Incidence Attack Rate Day of Peak  
Los Angeles 9,366,843 2.43% 23.9% 128 
Orange 2,812,102 2.47% 23.8% 129 
San Bernardino 1,672,705 2.36% 23.7% 130 
Riverside 1,514,716 2.27% 22.2% 129 
Ventura 740,166 2.34% 22.5% 129 
Five-county 16,106,535 2.41% 23.6% 129.5 
Table 6.3-1. Breakout by of the number of individuals in the synthetic population 
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6.4 Hospitalization Bed Surge Capacity Analysis 
Currently, EpiSimS does not explicitly identify hospitals as such, but instead, they are classified as 
workplaces. However, hospitals are included in the overall design of the simulation, so a post-
processing analysis approach was applied to determine the impact of pandemic influenza on hospital 
admissions. Hospital information such as location and bed count were obtained from the 2004 
NGA’s Emergency Response data. There are 195 hospitals, and a total of 46,809 beds within the five 
counties under study (Table 6.4-1). Based on the average occupancy percentage in California and 
average response capacity studies, we assumed that only 10%  of all hospital beds would be vacant 
and available during the influenza pandemic [LAO 2003, Rubinson 2005, AHRQ 2005]. These beds 
are assumed to be licensed, physically available, and have staff on hand to attend the patient who 
occupies the bed. We used the critical benchmark for all states set by the Health Resources and 
Services Administration (HRSA), to determine surge capacity, which specifies that an additional 500 
beds per 1 million population would be available in all counties (Table 6.4-1). 
 

County   Hospitals    Beds Surge 
Los Angeles  109  30,195  11,186  
Orange  35  7,826  2,944   
Riverside  17  3,036  1,181  
San Bernardino    26  4,355  1,651  
Ventura  8  1,397  549  
TOTAL  195  46,809  17,510   
Table 6.4-1. Hospital beds by county. Surge includes 10% of total 
beds, plus 500 additional beds per 1 million population. 

 
Hospitalization rates for the baseline scenario were obtained from two sources: 1) FluAid 2.0 
software available from CDC [Meltzer 2000] and are given for different age risk groups in Table 
6.4-2; and 2) The 2005 UK flu pandemic contingency plan, which states that for typical flu seasons, 
20%  of total cases visit a general practitioner (GP), and that 1 in 30 of these GP visits results in 
hospitalization.   
 
 

High Risk/Non-High Risk  Minimum  Mean  Maximum  
0-18 years  2.3  3.4  11.9   
19-64 years  1.01  4.55  7.89   
65+ years  5.5  10.75  16   
Table 6.4-2. Age and risk hospitalization rates, per 1000 cases. 

 
We assumed that infected individuals would seek medical care at their local hospital. Therefore, we 
obtained household IDs for all infected people and based on the hospitalization rates mentioned 
above, we placed them in hospitals located in the county where they live. Furthermore, we set the 
average length of stay in the hospital to 10 days, based on the epidemiology of influenza.   
 
Our simulations start with 202 index cases infected with a newly emergent influenza virus. The 202 
initially infected people were chosen at random from the five counties as follows: 116 from Los 
Angeles (0.00123%  of its population), 35 from Orange (0.00124% ), 22 from Riverside 
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(0.00145% ), 23 from San Bernardino (0.00137% ), and 6 from Ventura (0.00081% ). We did not 
start with one initial infected person because given the stochasticity in the model most epidemics 
that start with one index case die out before becoming established.  

Baseline 
The number of people infected with influenza for the five counties of the base case pandemic 
influenza scenario, are shown in Fig. 6.4-2. The epidemic peaks around day 129 and it is almost over 
by day 235, at which about 25%  of the population have been infected. The baseline scenario leads to 
3,813,957 cases and 50,990 deaths.  
 

 
Fig. 6.4-2. Daily incidence of infections over time aggregated over all five counties (Los Angeles, 
Orange, Riverside, San Bernardino, and Ventura) in the absence of intervention strategies.  
 
Table 6.4-3 shows the number and percentage of infected people by county. The disease is almost 
uniformly distributed among all counties, with each county having a disease prevalence of about 
23%  (Table 6.4-3). Even though each county started with a different number of index cases, they all 
eventually converged to a similar clinical attack rate. This result highlights the importance of inter-
connectivity between communities/counties. Thus, it is clear that the mobility within the population 
plays a crucial role in the spread of a contagious disease.   
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Fig. 6.4-3 shows the disease progression over time by county. We observe similar peak days and 
final days (when the number of cases reaches 99%  of the final epidemic size) for all five counties. 
The epidemic peaks around day 129 in all counties and it reaches its final day around day 200. 
However, note that the epidemic lasts for about 300 days in all counties before it completely dies 
out.   
  

 
Fig. 6.4-3. New influenza infections per day by county.  
 
The number of infected people by age group, aggregated over all counties is shown in Table 6.4-4. 
Our results show that adults have the highest percentage of cases; however, when the number of 
cases is normalized to the total population in each group, children under the age of 18 are the most 
affected, with 31.2%  of its population being infected. This is not surprising, since children interact 

County  No. of Cases  %  of Cases   Total 
Population  

%  Infected   

Los Angeles  2,242,332  58.8%   9,366,843  23.9%   
Orange  669,818  17.6%   2,812,102  23.8%   
Riverside  337,367  8.8%   1,514,719  22.2%   
San Bernardino  397,682  10.4%   1,672,705  23.7%   
Ventura  166,758  4.4%   740,166  22.5%   
TOTAL  3,813,957  100%   16,106,535  23.6%   
Table 6.4-3. Number and percentage of cases per county. 
 



 63 

with each other more than with the rest of the population and we assumed a higher infectivity rate 
for children. This assumption is consistent with previous pandemic influenza data, which suggests 
that younger people tend to be more susceptible due to lack of exposure to similar viral antigens 
during seasonal flu epidemics [Simonsen 1998].  
 
 

Age group  No. of Cases  %  of Cases  Total 
Population  

%  Infected  

0-18 years  1,577,624  41.4%   5,041,103  31.2%   
19-64 years  2,074,708  54.4%   9,519,517 21.7%   
65+ years  161,625  4.2%   1,545,915  10.4%   
Table 6.4-4. Number and percentage of cases by age group. 

 
Fig. 6.4-4 shows the number of daily cases by age groups aggregated over all five counties. The 
epidemic peaks around day 125 for the youngest group, day 126 for the adult group, and day 128 for 
the senior group. Furthermore, we observe that at the beginning, the epidemic curves for the 
youngest and adult group overlap, but as the disease progresses they separate from each other. Fig. 
6.4-5 shows the same data as Fig. 6.4-4, but normalized to the total number of people in each age 
group. We observe that the population under the age of 18 is the most affected when compared to the 
rest of the population (also shown in Table 6.4-4).  
 

 
Fig. 6.4-4. New influenza infections per day stratified by age group aggregated over all five counties 
(Los Angeles, Orange, Riverside, San Bernardino, and Ventura).  
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Fig. 6.4-5. Fraction of new influenza infections per day stratified by age group aggregated over all 
five counties. Note that the 0-18 year old age group is the most affected 
 
Fig. 6.4-6 shows the number of daily cases stratified by age group and county. We observe different 
attack rates for each age group for all counties. Note that the epidemic curves for the young and 
elderly for Riverside and San Bernardino County have very similar attack rates. There are several 
possibilities that can be causing this pattern. One possibility is that the population between the ages 
of 0 and 18 is larger in these two counties when compared to the other three counties, and therefore 
they have a greater chance of becoming infected. Another possibility is that he mixing among 
children is higher in these two counties, resulting in more cases for these particular age groups.  
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Fig. 6.4-6. New influenza infections per day stratified by age group and county.  
 

Hospitalizations 
For the baseline parameter values, our results indicate that a pandemic influenza could cause a 
minimum of 6,608 hospitalizations, and a maximum of 37,725 hospitalizations in all five counties 
(Table 6.4-5). Based on the assumption previously stated for surge capacity, an additional 3,807 and 
24,992 beds could be needed if the new emergent flu virus has hospitalization rates similar to those 
stated by the CDC; and 12,693 additional beds if the hospitalization rates are similar to those stated 
by the UK contingency plan (Table 6.4-5, Fig. 6.4-7).   
 
 

County                    Hospitalizations       
 Minimum  Mean  UK Maximum   
Los Angeles  3,894  9,772  14,949 22,171   
Orange  1,133  2,915  4,465 6,547   
Riverside  601  1,446  2,249 3,389   
San Bernardino    697  1,679  2,651 3,981   
Ventura  283  728  1,112 1,637   
TOTAL  6,608  16,540  25,426 37,725   
Table 6.4-5. Number of hospitalizations by county 
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Fig. 6.4-7. Estimated number of hospitalizations aggregated over all five counties in the absence of 
interventions.  
 
In Los Angeles County the total number of hospitalizations during a pandemic influenza could range 
between 3,894 and 22,171; resulting in 2,070, 7247, and 14,469 patients without beds for the mean, 
UK, and maximum hospitalization rates, respectively (Table 6.4-5, Fig. 6.4-8). In Orange county the 
number of hospitalizations could range between 1,133 and 6,547; and an additional 726, 2,276, and 
4,358 beds could be needed for the mean, UK, and maximum hospitalization rates, respectively 
(Table 5, Fig. 8). In Riverside county, the number of hospitalizations could range between 601 and 
3,389; and 385, 1,188, and 2,328 extra beds could be needed for the mean, UK, and maximum 
hospitalization rates, respectively (Table 6.4-5, Fig. 6.4-8). In San Bernardino County, the number of 
hospitalizations could range between 697 and 3,981; requiring 408, 1,380, and 2,710 additional beds 
for the mean, UK, and maximum hospitalization rates, respectively (Table 6.4-5, Fig. 6.4-8). Finally, 
in Ventura county, the number of hospitalizations could range between 283 and 1,637; in which 218, 
602, and 1,127 extra beds could be needed for the mean, UK, and maximum hospitalization rates, 
respectively (Table 6.4-5, Fig. 6.4-8).  
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Fig. 6.4-8. Estimated number of hospitalizations and surge capacity by county.  
 
We observe that when we aggregate the resources over these five counties, the surge capacity 
threshold is exceeded by about 23%  for the mean hospitalization rate (Fig. 6.4-7). However, when 
we analyze each county separately, we observe that the surge capacity threshold for the mean 
hospitalization rate is exceeded by 21% , 25% , 27% , 24% , and 30%  for Los Angeles, Orange, 
Riverside, San Bernardino, and Ventura County, respectively (Fig. 6.4-8). In fact, Los Angeles 
County is the only county in which the surge capacity threshold is exceeded by under 23%  (Fig. 6.4-
8). Therefore, analyses based on aggregated results can be misleading and may underestimate the 
lack of resources needed at local hospitals.  
Table 6.4-6 shows the total number of hospitalizations likely to occur during a pandemic influenza 
stratified by age groups. Our simulations show that the young and elderly could account for a 
significant number of hospitalizations. Therefore, our results highlight the need for prevention 
efforts for both young and older people.  
 

Age group  Minimum  Medium  Maximum   
0-18 years  3,627  5,364  18,772   
19-64 years  2,094  9,439  16,368   
65+ years  887  1,737  2,585   
TOTAL  6,608  16,540  37,725   
Table 6.4-6. Number of hospitalization by age group. 
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Discussion 
We estimate that during the length of the pandemic, a total number of hospitalizations ranging from 
6,608 to 37,725 could occur. Although we observed higher hospitalization rates in the elderly, the 
youngest age group accounted for more than half of the total number of influenza-related 
hospitalizations. Therefore, these findings emphasize the importance of providing protection to both 
young and older people to minimize morbidity and mortality. These results are consistent with 
previously published studies, which highlight the need for improved prevention efforts for these age 
groups. 
 
Our results show that when we combine all the resources available in Los Angeles, Orange, 
Riverside, San Bernardino, and Ventura County, the surge capacity threshold is exceeded by 23%  
for the mean hospitalization rate. However, when we analyze each county separately, we found that 
all counties (except for Los Angeles) exceed the surge capacity threshold by over 23%  for the same 
hospitalization rate. Therefore, a key finding was that aggregating the total number of resources 
needed during an influenza pandemic, can greatly underestimate the capacity at local hospitals. 
 
It is important to note that the analysis in this study was based on a 25%  attack rate and on the 
hospitalization rates provided by FluAid2.0 and the UK contingency plan. However, no one knows 
whether the newly emergent flu virus will be similar to the previous influenza pandemics. Therefore, 
these results may vary depending on the virulence the new influenza virus. However, our model can 
be adjusted to analyze the impact of a pandemic, if real-time data is available. Nevertheless, our 
results are useful in providing estimates of the potential impact of the next pandemic on health care 
resources. 
 
One limitation of this analysis is that it does not provide the impact of reductions on influenza-
related hospitalizations due to antiviral or vaccine treatment.  
 
The state of the health care system in California is important because Los Angeles is one of the 
largest cities in the nation and a major attractor for immigrants. Furthermore, studies on medical care 
capacity in Los Angeles have raised concerns about the hospitals’ ability to respond to seasonal 
influenza outbreaks. Therefore, if the current health care system is not able to handle patients during 
seasonal influenza outbreaks, it is impossible to assume that we will be ready to manage a pandemic. 
Thus, preparedness is a must if we want to reduce morbidity and mortality during an influenza 
pandemic.  
 
Based on this analysis of hospitalization, there are several implications for public policy. Each 
hospital should be investigated individually to determine the true surge capacity. Both young and old 
should be provided protection to minimize morbidity and mortality. Planning requires knowledge of 
the virulence of the newly emergent influenza virus and susceptibility of the population to the virus. 
Finally, there are not enough beds for the levels of hospitalizations resulting under this scenario: a 
significant increase in surge capacity is needed.  

 

 



 69 

7 Results: Effectiveness of Disease Intervention Strategies 

7.1 Case 1: 2% Anti-Virals, No Pre-Vaccination 

In the antiviral treatment scenarios, courses of antiviral medicines are stockpiled, with enough 
courses (or regimens) to treat a specified percentage of the population. The scenarios examined are: 
stockpile levels to treat 2% or 4% of the population. The antivirals are given to 1) persons who 
present influenza symptoms, and 2) named contacts of such symptomatic persons, in particular their 
household members and some fraction of their co-workers or school-mates. Antiviral treatments are 
dispensed until either they run out, or the epidemic is stopped. Antiviral treatments are dispensed by 
contact tracers. The number of contact tracers, and the number of contacts they can trace per day are 
specified. The antiviral treatment must be received either prior to onset of symptoms, or else within 
48 hours of symptom onset, to be effective. 

Antiviral treatment is implemented into EpiSimS by defining distinct disease states depending on 
whether antiviral treatment has been received, and by adjusting the disease state transition 
probabilities according to whether antiviral treatment has been received. The first disease state to 
consider is “uninfected-susceptible”. If a person receives antiviral treatment prior to exposure to an 
infectious dose of virus, that person is marked as having received antiviral treatment. If, 
subsequently, that person does receive an infectious dose in the course of his activities in the 
simulation, such person marked as having received antiviral treatment has a 30% chance to transition 
directly to an effectively immune state, and a 70% chance of transitioning to the latent-incubating 
disease state. Such a person will maintain the mark denoting that he has received antiviral treatment. 
This sequence might be expected when a person becomes symptomatic, then has all her household 
members treated with antivirals, and then exposes a household member who is acting in a care-
taking capacity. The alternative way for a person to find himself in the latent-incubating disease state 
with antiviral treatment is to become infected first, and then to be named as a contact by a 
symptomatic person. Both routes are possible in the EpiSimS simulation. 

There are four distinct disease states that a latent-incubating person undergoing antiviral treatment 
can transition to. These are 1) recovered-immune, 2) treated-subclinical-infectious1, 3) treated-
symptomatic_non-circulating1, and 4) treated-symptomatic-circulating1. A person in the latent-
incubating state will transition out of that state with a probability per unit time determined by the 
incubation stage sojourn time histogram described in section 3.2. When a person receiving antiviral 
treatment does make the transition out of the latent-incubating state, he will have a 60% chance of 
transitioning directly to the recovered-immune state. On the other hand, a person in the latent-
incubating state not receiving treatment will have no chance of transitioning directly to the 
recovered-immune state, but will always go into one of the infectious states. 

When an incubating person receiving antiviral treatment transitions out of the incubating state, he 
will have a 13.3% chance of transitioning into the treated-sub-clinical-infectious1 state. The sojourn 
time in this state is one day shorter than the normal infectious state (achieved by advancing the 
transition histogram by 24 hours). A person in a subclinical infectious state will be half as infectious 
as a symptomatic person, and will continue to engage in their normal activities. 

The remaining 26.7% of latent-incubating-antiviral cases will transition to one of two treated-
symptomatic states. There are two such states, one for persons who stay at home, and the other for 
those that continue to circulate even though they are symptomatic. The allocation between 
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circulating-symptomatic and stay-home-symptomatic states depends on the age of the person. For 
adults and seniors, half of symptomatic cases will stay home. For students, 75% will stay home, and 
80% of pre-schoolers will stay home. 

Persons in the treated infectious states transition out of those states according to the appropriate 
histogram. 2% of people transition into death, and 98% transition into a recovered-immune state. 

Fig. 7.1-1 shows some EpiSimS simulations of the scenario with antivirals stockpiled to treat up to 
2% of the population. There are 202 index cases infected at the start of the simulated epidemic.  

 

 

Fig. 7.1-1. New infections per day for seven EpiSimS runs with the antiviral treatment 
scenario, for different sets of 202 individuals infected at day 0. For some runs, the antiviral 
treatment was delayed to as if the disease were not immediately recognized. 

In the EpiSimS results shown in Fig. 7.1-1 for antiviral treatment of contacts, all symptomatic cases 
were addressed by the contact tracing response. The epidemic is stopped in all the seven simulations 
shown. The stochastic nature of small outbreaks is clear. The epidemic curves of new cases per day 
as a function of time can not be reproduced with the scoping model by a simple reduction in the 
transmissions per day per infectious person to account for antiviral treatments. Apparently, the 
shortening of the effective infectious period due to antivirals is also a significant factor in the 
dynamics.  
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7.2 Case 3: 4% Anti-Virals, No Pre-Vaccination 

If the antiviral treatment reduces the new-case-per-day growth rate to a negative value, the epidemic 
will be prevented. If the growth rate is not pushed below zero, the epidemic will eventually take off, 
whether antivirals are available for 2% or 4% of the population. 

7.3 Case 2: No Anti-Virals, 20% Uniform Pre-Vaccination 

If a vaccination can be developed for an avian influenza that jumps to humans, some people will be 
vaccinated before the epidemic, and some will be vaccinated during the course of the epidemic. 
EpiSimS can be used to simulate the administration of the vaccine to the population, accounting for 
resource limits in number of vaccinators, number of doses, etc. It can also implement targeted 
vaccination strategies, such as preferential vaccination of elderly, school-age, or some other 
prioritization. With this approach, a vaccination is treated as an event that happens to an individual at 
some time during the simulation, causing a change in the state of that individual. 

Alternatively, vaccination can be viewed as a change in the population that is done prior to the 
epidemic. In this treatment, the population is initialized with appropriate individuals pre-vaccinated. 

For a pre-vaccinated initial population, those individuals that were vaccinated will follow the 
following disease manifestation. Upon being exposed to an infectious dose by co-occupation of a 
room with an infectious person, a pre-vaccinated individual will transition immediately to a 
recovered-immune state with a 70% likelihood. For the remaining 30%, the vaccination was not 
completely effective, but their illness is milder and they are less contagious than if they had not been 
vaccinated. These 30% enter a vaccinated-incubating state. 

These vaccinated-incubating persons will transition to a vaccinated-infectious state, with the 
transition following the incubation-to-symptomatic transition histogram. There are three variants of 
the vaccinated-infectious state: sub-clinical, circulating, and self-isolating. For all three variants, the 
transition from the vaccinated-infectious state is given by the histogram formulation, except that the 
histogram is advanced by one day. 98% of vaccinated-infectious cases transition to the recovered-
immune state, and 2% of them transition to a dead state. 

Besides having a day shorter average state duration, the vaccinated-infectious state differs from the 
(unvaccinated) infectious state by being one fifth as infectiousness. The base case infectiousness for 
untreated, symptomatic adults and seniors is i0=0.005*0.0095 transmissions per contact per minute. 
School-agers and pre-schoolers have double the infectiousness of adults or seniors. 

One third of vaccinated-infectious cases are taken to be sub-clinical. Of the symptomatic vaccinated-
infectious cases, the self-isolating fraction is taken as 0.5 for adults and seniors, 0.75 for school-
agers, and 0.8 for pre-schoolers. Sub-clinical infectious cases are taken to be half as infectious as 
symptomatic cases. 

Fig. 7.3-1 shows the epidemic curve generated by EpiSimS simulation of an epidemic in the case 
that 20% of the population is pre-vaccinated. 
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Fig. 7.3-1. The epidemic curve generated by EpiSimS simulation (run base_v20) of the case 
in which 20% of the population is pre-vaccinated prior to an epidemic. People are selected at 
random for vaccination, regardless of demographics. The epidemic curve predicted by the 
scoping model is also shown. 

The scoping model can implement pre-vaccination in an approximate way by simply reducing the 
initial fraction of the population that is susceptible. Taking influenza vaccination to be 70% effective 
for prevention of disease gives that a 20% uniform vaccination rate corresponds to an initial 
susceptible fraction of 86% of the population. The epidemic curve (i.e. the number of new cases per 
day as a function of time) generated by the scoping model is shown in this case in Fig. 7.3-1 for 
comparison. Except for the change in the number of initially susceptible persons, the scoping model 
and scenario parameters are identical to those used to model the base case as described in section 
2.1. Note that the scoping model does not account for the reduced infectiousness among those 30% 
of vaccinated persons that are not immune, of which some get sick. 

For the 20% uniform pre-vaccination scenario, the scoping model gives that 10.5% of the population 
becomes infected during the epidemic. The epidemic reaches a peak on day 210, at which time 
0.087% of the initial population is becoming infected per day. 

7.4 Case 4: No Anti-Virals, 40% Uniform Pre-Vaccination 

At a 40% vaccination level, the basic reproductive number drops to about 1 average transmission per 
case. From the base case reproductive number of 1.34, if the vaccination is 70% effective in 
preventing infection, the reproductive number would drop to 1.34(1-0.2*0.7)=0.9648. Fig. 7.4-1 
shows the epidemic curve from EpiSimS run base_v40, which treats the scenario in which 40% of 
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the population, selected independently of demographics, is vaccinated. In this regime, stochastic 
effects are pronounced. 

 

 

Fig. 7.4-1. The epidemic curve giving the number of new cases per day, for the scenario 
having 40% of the population vaccinated prior to the onset of the epidemic. 

The half-day-bucket-transition model with power-law transmission scaling was used to generate an 
epidemic curve, which is also shown in Fig. 7.4-1. The herd immunity was set to 28%, to account for 
40% of the population being vaccinated, with the vaccine having a 70% effectiveness in preventing 
disease. This gives a starting population of which only 72% are susceptible. Also, the basic 
reproductive number was reduced from 1.34 to 1.25 to provide a reasonable fit to the EpiSimS 
simulation of the 40% vaccination scenario. This apparently accounts for the reduced infectiousness 
that occurs in people that get sick but that had been vaccinated. 

7.5 Case 5: No Anti-Virals, 20% Targeted Pre-Vaccination 

 In targeted vaccination, doses of vaccine are available for a specified fraction of the 
population. A program of vaccination is initiated at the start of the simulation, at simulation time = 
0. The number of people that can be vaccinated per day is limited by the number of available nurses 
or other health care personnel, and the time it takes them to move from one location to the next, and 
the time spent at each location dispensing the vaccine. For targeted vaccination, we implement a 
prioritization in the vaccine recipients that is based on 1) the demographic groups that received high 
priority by the CDC guidelines during the vaccine shortage in the US during the 2004-2005 
epidemic influenza season, and 2) the prioritization guidelines of the United Kingdom Health 
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Department. This scenario of mass-vaccination of ~20% of the population, targeted at persons aged 
5 and under, and at persons 65 and older, is was constructed for consistency with the 2004-2005 flu 
season. 

 Fig. 7.5-1 shows the epidemic curve (new cases per day, versus time) for the scenario that 
200 randomly selected persons are infected at time 0, and a targeted mass-vaccination program is 
initiated at the same time. The number of vaccinators is set to a high enough value that everyone on 
the target list is vaccinated early in the first day of the simulated outbreak. 

  

 

Fig. 7.5-1. The epidemic curve for a targeted mass-vaccination scenario, in which 20% of the 
total population receives vaccine, and children (5 and under) and seniors (65+) have priority. 

 An approximate surrogate for modeling the impact of mass vaccination is to simply move 
some fraction of the initial susceptible population to an immune state at the beginning of the 
simulation. As we assume that 70% of susceptible persons receiving the vaccination prior to 
exposure would become immune, this approximate approach can be implemented by making 70% of 
children age 5 and under, and 70% of seniors age 65 and older, to be immune at the start of the 
simulation (seniors and preschoolers combine to form roughly 20% of the population). In Fig. 7.5-2, 
the epidemic curve is shown for this approximation, as is the epidemic curve obtained with the 
complete vaccine-treated disease manifestation. 
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Fig. 7.5-2. Epidemic curves from 1) simple vaccine surrogate model in which 14% of the 
population (all selected from preschoolers and seniors is made immune) are made immune at 
the start of the simulation, and 2) the complete vaccine EpiSimS implementation, in which 
20% of the population is vaccinated at the start of the simulation (targeting preschoolers and 
seniors), with proper treatment of reduced infectiousness and duration of infectiousness 
among vaccinated persons that do become infected. 

The simplified surrogate treatment of mass vaccination by moving people directly to an immune 
state if their vaccine is effective is found to give about twice the epidemic growth rate as the more 
detailed treatment that includes the reduction in the infectious period by one day, and reduction in 
the infectiousness of vaccinated but infected persons. 

7.6 Case 6: Masking 
Another consequence mitigation strategy is to get people to wear masks. Even in the absence of 
effective antiviral medication or vaccine, if 50% of persons over the age of 5 wear N95 masks while 
they are in contact with other people, the epidemic can be prevented. Fig. 7.6-1 shows the number of 
new infections per day and the current number of symptomatic persons for when the masking 
response is used. The average number of transmissions per infected person drops to a value of 0.9, 
which is insufficient to maintain the chains of infection. Starting with 202 infections, there are a total 
of 6 fatalities. There are a total of 1253 infections, counting the 202 index cases. 
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Fig. 7.6-1. The epidemic curves for a pandemic influenza in Los Angeles, for a scenario matching 
the base case, except that 50% of susceptible persons over the age of 5 wear ventilated N95 masks 
when in contact with other persons. 
 
A second masking scenario specifies that 25% of susceptible persons over the age of five wear 
ventilated N95 masks when in contact with other persons. An EpiSimS simulation run for 200 days 
of simulation time finds that the epidemic is slowly growing, with a growth rate of 1.7% per day. 
The scoping model finds that this corresponds to an average reproductive number of 1.08. The 
epidemic curve generated by EpiSimS, and the projection constructed with the scoping model are 
shown in Fig. 7.6-2. The projected outbreak reaches a peak of 5008 new infections per day. The 
peak is attained about 300 days after reaching a new infection rate of 100 new cases per day. 
Stochastic effects can be clearly observed early in the epidemic. By the end of the outbreak, there 
will have been a total of 1,111,279 infections. 
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Fig. 7.6.2. The epidemic curve generated by EpiSimS for a scenario matching the base case, 
except that 25% of susceptible persons over the age of five wear ventilated N95 masks when in 
contact with other persons. The projection constructed with the scoping model is also shown as 
the smooth red line. 
 

 

8 Known Issues and Future Work 

Improved Validation and Statistics for UPMoST Information 

Links as well as locations were made available in the UPMoST Household and Activity information. 
A link represents an aggregated set of locations. A home location and link were available for 
households and locations and links were available for activities. The UPMoST software required a 
modification to be able to read these links correctly. The link was stored as a float when read, losing 
digits when converted to an integer. This was changed to a double. 

The UPMoST Activity information had missing and extra data. Some people did not start their 
activities at 00:00:00 and some continued to have activities after midnight. EpiSimS requires a 24-
hour schedule for each person. Schedule generation was modified to correct these situations after 
multiple iterations of bad schedules. Validation of the UPMoST information would have saved us 
time and effort in the preprocessing. 

Statistics should also be made available about the UPMoST person, household, and activity 
information. Knowing the distribution of the demographics over the people and households, and 
activities throughout the day could help us in designing scenarios and understanding results. 
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Checkpoint and Restart Capability 

A checkpoint and restart capability is desirable for long runs that cannot be completed as a single 
job. Each person’s health state and current schedule item, as well as any scenario commands 
currently in affect (ex. self-isolation, mass treatment, ring delivery) need to be written to a 
checkpoint file. The time interval for checkpoint files should be selectable by the user. 

Regression Testing Suite  

A set of tests, under version control, representing the common scenarios (ex. none, self-isolation, 
mass treatment, ring delivery, etc) should be developed and run for EpiSimS after major changes and 
when porting to other parallel architectures. These tests should have a 1K-, 10K-, 100K-, and 1M-
person configuration associated with each. 

Hospitals and Morgues 

Hospitals should be modeled specifically in EpiSimS with attention to details such as the number of 
beds available and the people that actually work there (doctors, nurses, lab technicians, etc).  
Hospital workers will need to be marked separately from other people. This will allow for the 
treatment of hospital workers before others and the creation of hospital worker disease 
manifestations. Additional scenario commands may be required to cause people to go to a hospital 
based on a disease attribute (e.g. when symptoms > 3).  

Because several historical smallpox cases were acquired in morgues, Morgue might be added as a 
new type of location. Once a person has died they can be moved to a morgue. This is a low priority, 
as the impact of such transmissions would be small. 

New Output Events and Selection 

Additional output events that would be useful are events for when a room changed disease state, and 
when a room was treated. Example information for each type follows. 

Person infected event: 
I <time> <person-id> <room-id> <location-id> <activity-id> 

Room changed disease state event: 
RD <time> <room-id> <old-disease-state> <new-disease-state> <location-id> 

Room treated event: 
RT <time> <room-id> <location-id> <treatment-id> 
 
The output event types desired by the user should be made selectable as a 
parameter in the configuration. 

Enhance Treatment Delivery Scenarios 

The scenario commands for mass treatment and ring treatment should be extended to include a time 
to stop delivery of treatments, allow treatment to individuals based on other demographics besides 
age, and allow selection of activity (ex. home, work, shop, school, college) that should be targeted. 
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More Behavior Modification Disease Intervention Strategies 

Currently, the EpiSimS simulation supports a couple of behavior modifications, self-isolation and 
the use of masks. We would like to add more behavior modifications, such as the use of gloves, hand 
hygiene, respiratory cough etiquette, limiting travel, working from home, staying home from school, 
and closures by activity. They should be added in a general manner to allow easy addition of new 
behavior modification disease intervention strategies. 

Multiple Diseases or Mutating Disease Simulation 

Explore how multiple diseases (ex. Flu and Pneumonia) and mutating diseases (ex. flu) can be 
modeled simultaneously. Research how disease manifestations combine in individuals. Design and 
develop the enhancements required. 

Partitioning Enhancements 

We are in the process of testing the sublocation model using a maximum count of the number of 
persons at a location for specified time intervals during the day. We intend to compare this to the 
results given with what we currently do: use the total number of people at a location during the day. 
The idea is to gather statistics and see if there is a change because of more sparsely populated rooms 
in our current model. 

Locations are currently assigned to the processors in a run randomly. The current load distribution 
may not be balanced. Exploring the partitioning of locations based on activity or geographical 
proximity could make a difference in the efficiency of the code's message passing usage. 

Set-up Tool 
Perfect a Set-up Tool that leads the user through a step-by-step process of simulation set-up. The 
tool will check for consistency between the files and generate the configuration file needed to run the 
simulation. The tool should provide documentation of the simulation run and enforce a consistent 
structure to the input and output files. The tool is linked to other pre-processing programs: 
InitializeHealth, BuildDiseaseManifestation, and ScenarioBuilder. 

Lower Resolution Synthetic Population  
In order to be able to simulate larger and larger populations or run lower fidelity EpiSimS models, 
we need to aggregate data or eliminate data. One approach is to use "tract" as the location resolution 
to aggregate locations. Schedule and partition files would be generated using these "tract" locations. 
Then 99% of the households would be eliminated randomly. This would also remove the people 
associated with those households. We will explore how the epidemic results of this smaller scale 
model compare to the corresponding high-fidelity version. 

Spatial Dynamics of Epidemics 
Currently, to assemble the data associated with the spatial dynamics of an epidemic over time 
requires post-processing of the event output along with data from the entities, schedules, etc. This 
can be time-consuming and tedious. Another approach is to collect counts of the epidemic 
parameters (# infected, infectious, recovered, dead, etc.) per location as the simulation progresses. 
Counts would be modified as people arrive/leave a location and when people change disease state. 
These counts could be reported per day or at a user selected time interval. Counts over the entire 
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simulation could be summed up across all locations on a processor and gathered and reported by the 
MASTER node. This would also be useful in watching the progress of a simulation as it is running. 

New Architectures 
EpiSimS will be ported to other LANL Institutional Computing clusters such as TLC and Coyote 
with architectures (ex. processors, memory size, interconnect, file system) different from Pink and 
our local cluster (delibes). Faster processors, more memory, faster interconnects, and parallel file 
systems will allow us to run larger population models. Some design changes, message passing 
tuning, and use of parallel I/O software will be required. 
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